Report of Findings Majestic Hills Subdivision (Phase 2) Groundwater Availability Certification for Platting: Blanco County, Texas

For: Lone Star Land Partners, LLC. 110 CR 250 Burnet, Texas 78611

Wet Rock Groundwater Services, L.L.C. Groundwater Specialists TBPG Firm No: 50038 317 Ranch Road 620 South, Suite 203 Austin, TX 78734 Ph: 512.773.3226 www.wetrockgs.com

REPORT OF FINDINGS WRGS 19-016

Majestic Hills Subdivision (Phase 2) Groundwater Availability Certification for Platting: Blanco County, Texas

for

Lone Star Land Partners, LLC. 110 CR 250 Burnet, Texas 78611

> Burnet County, Texas December 2019

WRGS Project No. 083-002-19

Wet Rock Groundwater Services, L.L.C.

Groundwater Specialists 317 Ranch Road 620 South, Suite 203 Austin, Texas 78734 • Phone: 512-773-3226 www.wetrockgs.com TBPG Firm No: 50038 The seal appearing on this document was authorized by Kaveh Khorzad, P.G. 1126 on December 6, 2019:

hach theyad

Kaveh Khorzad, P.G. License No. 1126

Wet Rock Groundwater Services, LLC TBPG Firm Registration No. 50038

i

(This Page Left Blank Intentionally)

ii

Table of Contents

Section I: Introduction	
Section II: Projected Water Demand Estimate	,
Section III: General Groundwater Resource Information	ł
III.1. Introduction	ŀ
III.2. Stratigraphy and Geologic History	ŀ
III.3. Hydrogeology	1
Section IV: Aquifer Testing)
IV.1. Well Details	,
IV.2. Aquifer Testing	;
IV.3. Water Quality	,
IV.4. Groundwater Availability	,
Section V: Certification	,
Section VI: References	;

Figures

Figure 1: Location map	. 1
Figure 2: Groundwater Conservation District map	.2
Figure 3: Geologic map and stratigraphic column (modified from McGeehee, 1979; Preston et. al, 1996)	6
Figure 4: Aquifer map	.7
Figure 5: Well location map	.9
Figure 6: Well construction profiles of Wells No. 1, No. 2, and No. 3	14
Figure 7: Well construction profiles of Wells No. 4, No. 5, and No. 6	15
Figure 8: Well construction profiles of Wells No. 7, No. 8, and No. 9	16
Figure 9: Well construction profiles of Well No. 10 and St. Well No. 57-60-607	17
Figure 10: Aquifer test hydrograph of Well No. 1 (September 30, 2019)	19
Figure 11: Aquifer test hydrograph of Well No. 1 and Observation Well No. 2 (September 30, 2018)?	20
Figure 12: Aquifer test hydrograph of Well No. 3 (October 2, 2019)	22
Figure 13: Aquifer test hydrograph of Well No. 3 and Observation Well No. 2 (October 2, 2019)	23
Figure 14: Aquifer test hydrograph of Well No. 4 (September 23, 2019)	25
Figure 15: Aquifer test hydrograph of Well No. 4 and Observation Well No. 5 (September 23, 2019)?	26
Figure 16: Aquifer test hydrograph of Well No. 6 (September 25, 2019)	28
Figure 17: Aquifer test hydrograph of Well No. 6 and Observation Well No. 5 (September 25, 2019)	29
Figure 18: Aquifer test hydrograph of Well No. 8 (October 7, 2019)	31
Figure 19: Aquifer test hydrograph of Well No. 8 and Observation Well No. 7 (October 7, 2019)	32
Figure 20: Aquifer test hydrograph of Well No. 8 (December 2, 2019)	34
Figure 21: Aquifer test hydrograph of Well No. 8 and Observation Well No. 4 (December 2, 2019)	35
Figure 22: Aquifer test hydrograph of Well No. 9 (September 18, 2019)	37
Figure 23: Aquifer test hydrograph of Well No. 9 and Observation Well No. 10 (September 18, 2019)	38
Figure 24: Aquifer test hydrograph of Well No. 10 (September 9, 2019)	40
Figure 25: Aquifer test hydrograph of Well No. 10 and Observation Phase I Well No. 4 (September 9, 201	
Figure 26: Distance drawdown plot for Well No. 1	
Figure 27: Distance drawdown plot for Well No. 3	49
Figure 28: Distance drawdown plot for Well No. 4	50
Figure 29: Distance drawdown plot for Well No. 6	51
Figure 30: Distance drawdown plot for Well No. 8	52
Figure 31: Distance drawdown plot for Well No. 9	53
Figure 32: Distance drawdown plot for Well No. 10	54

iv

Tables

Table 1: Summary of Majestic Hills well construction	12
Table 1: Summary of Majestic Hills well construction continued	13
Table 2: Summary of aquifer test results	42
Table 3: Summary of the water quality analysis results	44
Table 4: Summary of distance-drawdown calculations	47

Appendices

Appendix A: Certification of Groundwater Availability for Platting Form

Appendix B: Geophysical Logs

Appendix C: State Well Reports

Appendix D: Aquifer Test Data and Analyses

Appendix E: Well Efficiency Calculations

Appendix F: Water Quality Reports

v

Section I: Introduction

This report details the results of a groundwater availability study for Phase II of the proposed Majestic Hills Subdivision (the subdivision) to meet the requirements of the Certification of Groundwater Availability for Platting Form (*Title 30, Texas Administrative Code, Chapter 230, Sections 230.2 through and including 230.11*). Appendix A provides the completed Certification of Groundwater Availability for Platting Form.

The subdivision is located south of Trainer Wuest Rd. along Carolina Trail, approximately 3.5 miles southwest of the City of Blanco in southwestern Blanco County (Figure 1). The second phase of the proposed subdivision is documented within the Blanco County Tax Assessor as Property IDs: 7792, 7800, 7786, and 7787. Lone Star Land Partners, LLC (110 CR 250 Burnet, Texas 78611) is the plat applicant.

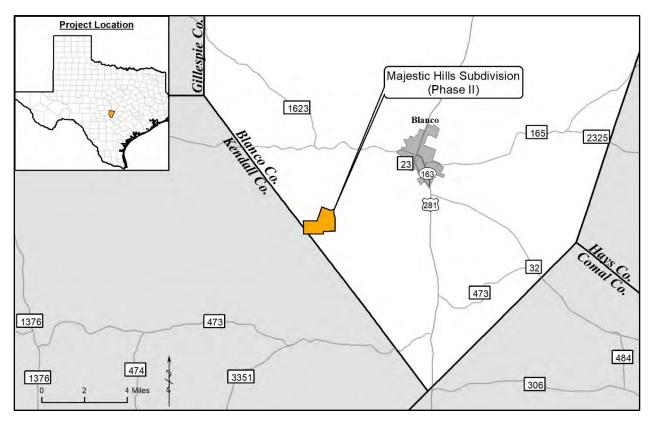


Figure 1: Location map

Lone Star Land Partners, LLC proposes to develop the second phase of the approximately 1,394 acre Majestic Hills Subdivision. Phase II consists of approximately 789 acres including 116 single family residential lots. The average lot size is 6.16 acres which will be served by individual water wells. The subdivision is located within the jurisdiction of the Blanco Pedernales Groundwater Conservation District (BPGCD). Figure 2 provides a map showing the general location of the subdivision with the county and groundwater district boundaries.

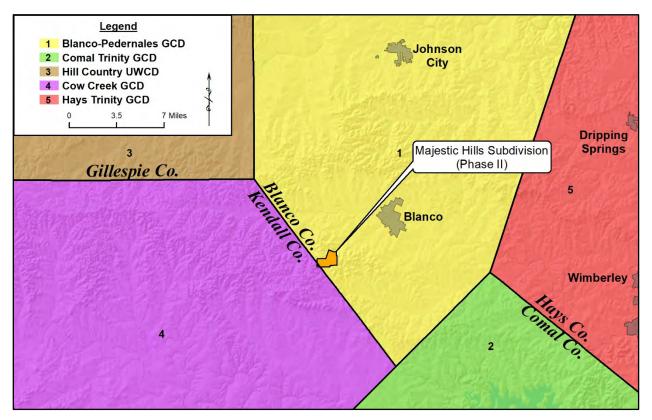


Figure 2: Groundwater Conservation District map

Section II: Projected Water Demand Estimate

The Blanco County development rules and regulations require applicants to use the following formula when calculating demand for a subdivision:

Equation 1: Total Water Demand

 $Q_s = n \ x \ 3.5 \ x \ 100 \ x \ 365 \ days = 14,819,000 \ gallons/year \ or \ 45.48 \ acre-feet/year$

Where:

 Q_s = Total Water Demand at full build out for the subdivision;

n = Number of connections (116 lots);

3.5 = Average number of persons per household; and

100 = The average per capita usage of water per day in gallons.

Equation 2: Water Demand per Housing Unit

 $Q_h = 3.5 \times 100 \times 365 \text{ days} = 127,750 \text{ gallons/year or } 0.39 \text{ acre-feet/year}$

Where:

 Q_h = Total Water Demand per house per year

Equation 1 assumes 3.5 persons per household using 100 gallons per person per day which results in a total water demand for the subdivision of 45.48 acre-feet/year. Equation 2 results in a water demand per housing unit of 0.39 acre-feet/year. There are no planned non-residential water demands.

Section III: General Groundwater Resource Information

III.1. Introduction

According to the Texas Water Development Board (TWDB), there are two (2) major aquifers (Trinity and Edwards-Trinity (Plateau) and three (3) minor aquifers (Marble Falls, Hickory, and Ellenburger-San Saba) within Blanco County that supply groundwater resources. The TWDB classifies major aquifers as aquifers that produce large amounts of water over large areas, and minor aquifers as aquifers that produce minor amounts of water over large areas or large amounts of water over small areas. Of these aquifers, all are present at the study area excluding the Marble Falls Aquifer. These aquifers are regionally extensive aquifer systems made up of Cretaceous carbonates and Paleozoic carbonates and sandstones that were deposited throughout central Texas. These aquifers are affected by geologic structures which include the Llano Uplift, the San Marcos Arch, and the Balcones fault system (Ashworth, 1983).

III.2. Stratigraphy and Geologic History

The subdivision overlies the Cretaceous aged sedimentary rocks comprising the Trinity and the Edwards-Trinity (Plateau) Aquifers. The Upper Member of the Glen Rose Formation covers the vast majority of the subdivision's surface, while the Fort Terrett Formation of the Edwards Group crop out over small areas in the east and west of the second phase. The sediments that comprise these groups were deposited approximately 140 million years ago by a Cretaceous aged sea that once dominated the interior of North America and the Gulf Coast region. For approximately 79 million years this shallow sea deposited the sediments that now make up the property and its surrounding area. Figure 3 provides a geologic map and stratigraphic column illustrating the geology surrounding the subdivision.

Making up the base of the study area lies the Cambrian aged Moore Hollow Group which consists of the Riley and Wilberns Formations. The oldest member of the Riley Formation is the Hickory Sandstone consisting of crossbedded terrestrial and marine quartz sandstones, siltstones, and mudstones which make up the Hickory Aquifer. In certain areas the Cap Mountain limestone overlies the Hickory, acting as a confining unit. The youngest member of the Riley Formation, the Lion Mountain Sandstone, is intermittently found overlying the Cap Mountain Limestone. The Welge Sandstone, the oldest member of the Wilberns Group, is hydraulically connected to the Lion Mountain forming the Mid-Cambrian Aquifer. The Morgan Creek Limestone and the Point Peak Shale are found directly above the Welge Sandstone and act as a confining unit between the Mid-Cambrian and the Ellenburger-San Saba aquifers. Completing the Wilberns Group is the San Saba Limestone which is the stratigraphically lowest part of the Ellenburger-San Saba Aquifer (Figure 3; Barnes and Bell, 1977; Preston et. al, 1996).

On top of the Moore Hollow Group is the Ordovician aged Ellenburger Group which consists of the Tanyard, Gorman, and Honeycut Formations and generally encircle the Llano Uplift. The Tanyard Formation is divided into two members: the basal dolostone Threadgill Member, and the overlying limestone Staendebach Member. Above the Tanyard, the Gorman and Honeycut Formations are comprised of dolostones and limestones which complete the Ellenburger Group and the Ellenburger-San Saba Aquifer (Figure 3; Preston et. al, 1996).

Scattered discontinuously throughout the Llano Uplift area are Devonian and Mississippian aged formations consisting of thin remnants of dark shales, petroliferous limestones, crinoidal limestone, chert breccias, fractured cherts, and microgranular limestones with bedded chert (Standen and Ruggiero, 2007; Preston et. al, 1996). Where present, the formations act as confining layers between the Ellenburger-San Saba Aquifer and the Marble Falls Aquifer (Figure 3; Preston et. al, 1996).

Pennsylvanian aged rocks unconformably overlie either the Ellenburger Group or the Devonian-Mississippian Formations. Groups making up this system include the Bend, Canyon, and Strawn Groups. The oldest member of the Bend Group is the Marble Falls Limestone, which is locally divided and makes up the Marble Falls Aquifer. The lower unit consists of massive limestone and reef deposits and the upper unit consists of fine grained bedded limestone with chert nodules and beds. The overlying Smithwick Formation consists of interbedded claystone, siltstone, and sandstone. Above the Bend Group are the Strawn and Canyon Groups comprised of limestones, shales, and fine-grained sandstones. Together with the Smithwick Formation, these groups act as confining units above the Marble Falls Aquifer (Figure 3; Preston et. al, 1996).

Cretaceous aged rocks overlie the Pennsylvanian system. The Cretaceous sediments comprising the Trinity and Edwards Groups were deposited by a shallow Cretaceous sea and once covered the entire region, but have since been eroded away completely in some areas. The Trinity Group is divided into three aquifers from oldest to youngest: The Lower, Middle and Upper Trinity Aquifers. Formations comprising the Lower Trinity Aquifer include, from oldest to youngest, the Hosston Sand Member and Sligo Limestone Member of the Travis Peak Formation. Updip in some parts of the outcrop, the equivalent rocks of the Hosston and Sligo are called the Sycamore sand. Above the Lower Trinity Aquifer is a confining unit separating the Lower Trinity Aquifer from the Middle Trinity Aquifer called the Hammett Shale. The Middle Trinity Aquifer is composed of from oldest to youngest, the Cow Creek Limestone, the Bexar Shale, and the Hensell Sand Members of the Travis Peak Formation and the Lower Glen Rose Formation. Above the Middle Trinity Aquifer is the Upper Trinity Aquifer composed of the Upper Glen Rose Formation, which completes the Trinity Group. Above the Trinity Group, lies the confining Walnut Formation and the Edwards Group. The Edwards Group consists of the Fort Terrett and Segovia Formations (collectively known as Edwards Limestone).

Image: Second		Legent 1 2	Kft Miles		Ot Kgru	Majest	tic Hills Subdiv (Phase II)	vision Qal Kgrl
Openation Openation <t< th=""><th>ERA</th><th>System</th><th>Group</th><th></th><th>Formation</th><th>Legend</th><th>Member</th><th>Hydrogeologic Unit</th></t<>	ERA	System	Group		Formation	Legend	Member	Hydrogeologic Unit
O O O Undivided IPen 000000000000000000000000000000000000	Cenozioc	Quaternary			(alluvium and fluviatile terrace deposits)	Qat Qt Qc Qcf		localized alluvial aquifers
Normal Strawn Canyon Undivided IPen Image: Strawn and Devonian and Devonian Devonian Devonian and Devon			ő		oogona		12: 11	
Normal Strawn Canyon Undivided IPen Image: Strawn and Devonian and Devonian Devonian Devonian and Devon			Edwards		Fort Terrett	Ked	Dolomite Mbr.	Edwards Plateau Aquifer
Normal Participant Normal Partipant Normal Participant Normal Particip	Dic	sno	Edwards		Fort Terrett	Kft Ked	Dolomite Mbr. Burrowed Mbr.	Edwards Plateau Aquifer
Normalization Normalization Normalization Normalization Comming year Sycamore Sligo Sand Hosston Sigo Sand Hosston Ksy Lower Trinity Aquifer Strawn Undivided IPst Bend Smithwick IPst Missippian and Devonian Mississippian and Devonian Undivided rocks MD Undivided Missippian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds Undivided IPst Undivided IPst Missippian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds Mississippian and Devonian Mississippian and Devonian Undivided rocks MD Undivided Undivided Import Corr Undivided Import Mississippian and Devonian Undivided rocks MD Undivided Import Mississippian and Devonian Undivided rocks MD Undivided Import Import Corr Undivided Import Import Tanyard Ot Staendebach Mbr. Threadgill Mbr. Ellenburger-San Saba Aquifer Import Import Import Corr Corr Mid-Cambrian Aquifer Import Import Import Import Import <	Vesozoic	retaceous	Edwards		Fort Terrett Walnut Formation Glen Rose Lmst.	Kft Ked Kwa Kgr Kgru Kgri	Dolomite Mbr. Burrowed Mbr. Upper Mbr.	Edwards Plateau Aquifer confining bed Upper Trinity Aquifer
Normalization Normalization Normalization Normalization Normalization Normalization Sycamore Sand Hosston Sigo Sand Hosston Ksy Lower Trinity Aquifer Normalization Canyon Undivided IPst Strawn Undivided IPst Bend Smithwick IPst Missippian and Devonian Mississippian and Devonian Undivided rocks MD Undivided Missippian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds Missippian and Devonian Mississippian and Devonian Undivided rocks MD Undivided Missippian and Devonian Mississippian and Devonian Undivided rocks MD Undivided Undivided Gorman Og Undivided Undivided Tanyard Ot Staendebach Mbr. Threadgill Mbr. Ellenburger-San Saba Aquifer Undivided Undivided Cws San Saba Mbr. Confining beds Undivided Undivided Cws San Saba Mbr. Confining beds Undivided Undivided Com Morgan Creek Lmst. Mid-Cambrian Aquifer Undivided Undivided Com Com Mtn. Sndst. Mid-Cambrian Aquifer	Mesozoic	Cretaceous			Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Sexar Shale	Kft Ked Kwa Kgr Kgri Kft	Dolomite Mbr. Burrowed Mbr. Upper Mbr.	Edwards Plateau Aquifer
Missippian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds usually confining beds Undivided usually confining beds Undivided usually confining beds 0 Undivided Ellenburger-San Saba usually confining beds 0 Staendebach Mbr. Ellenburger-San Saba usually confining beds 0 Ot Staendebach Mbr. Composition usually confining beds 0 0 Undivided Confining beds usually confining beds 0 0 Undivided Confining beds usually confining beds 0 0 0 Undivided usually confining beds 0 0 0 0 usually confining beds 0 0 0 0 0 usually conf	Mesozoic	Cretaceous		Peak alent	Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Sexar Shale Cow Creek Lmst.	Kft Ked Kwa Kgr/Kgr/Kgrl Kgrl Kgrl	Dolomite Mbr. Burrowed Mbr. Upper Mbr.	
Missippian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds usually confining beds Undivided usually confining beds Undivided usually confining beds 0 Undivided Ellenburger-San Saba usually confining beds 0 Staendebach Mbr. Ellenburger-San Saba usually confining beds 0 Ot Staendebach Mbr. Composition usually confining beds 0 0 Undivided Confining beds usually confining beds 0 0 Undivided Confining beds usually confining beds 0 0 0 Undivided usually confining beds 0 0 0 0 usually confining beds 0 0 0 0 0 usually conf	Mesozoic			Travis Peak Equivalent	Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand	Kft Ked Kwa Kgi Kgri Kht Kcc Kch	Dolomite Mbr. Burrowed Mbr. Upper Mbr.	confining bed
Missippian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds Image: State of the second s	Mesozoic		Trinity	Travis Peak Equivalent	Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided	Kft Ked Kwa Kgr Kgr Kgr Kh Kha Ksy	Dolomite Mbr. Burrowed Mbr. Upper Mbr.	confining bed
Missispian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds Image: State of the second s	Mesozoic		Linity	Travis Peak Equivalent	Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided	Kft Ked Kgr Kgr Kgr Kgr Kgr Kh Kh Kh Kh Kh	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr.	confining bed Lower Trinity Aquifer
Missispian and Devonian Mississippian and Devonian Undivided rocks MD usually confining beds Image: State of the second s	Mesozoic		ریان L Canyon Strawn	Travis Peak Equivalent	Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided	Kft Ked Kgr/Kgr/Kgr/ Kgr/Kgr Kgr/Kgr Kgr Kgr Kgr Kgr Kgr Kgr Kgr	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr.	confining bed Lower Trinity Aquifer
O O O O Undivided NO Staendebach Mbr. Staendebach Mbr. Ellenburger-San Saba No Tanyard Ot Staendebach Mbr. Aquifer No Threadgill Mbr. Threadgill Mbr. Aquifer No Vilberns Cwp Point Peak Mbr. Confining beds Norgan Creek Lmst. Wilberns Cre Lion Mtn. Sndst. Mid-Cambrian Aquifer Riley Riley Riley Cre Lion Mtn. Lmst. Confining beds	Mesozoic		ریان L Canyon Strawn	Travis Peak Equivalent	Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick	Kft Ked Kft Ked	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr.	confining bed Lower Trinity Aquifer confining beds
Image: Section of the section of t	Mesozoic	Hissippian and	At is a constraint of the second seco		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks	Kft Ked Kgr Kgru/ Kgr Kgr Kgru/ Kgr Kcc Kch Khà Kch Ksy IPcn IPst IPsw IPst IPsw IPmf	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer
Image: Section of the section of t	Mesozoic	ue iue Missippian and Devonian	At the second se		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut	Kft Ked Kft Ked Kgru	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer
Image: Section of the section of t		ue iue Missippian and Devonian	At the second se		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut	Kft Ked Kft Ked Kgru	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Undivided	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds
Riley Cap Mth. Lmst. contining beds		ue iue Missippian and Devonian	At the second se		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut Gorman	Kft Ked Ku Kgr/ Gr/ Gr/ Gr/ Gr/ Gr/ Gr/ Gr/ G	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Staendebach Mbr.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds Ellenburger-San Saba
Riley Cap Mth. Lmst. contining beds		ue iue Missippian and Devonian	Atuur L Canyon Strawn Bend		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut Gorman	Kft Ked Kft Kgr Kgr Kgr Kgr Kgr Kcc Kch Kka Kch Kss IPcn IPst IPst IPmf Oh Og Ot	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Staendebach Mbr. Threadgill Mbr.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds Ellenburger-San Saba
Riley Cap Mth. Lmst. contining beds		Ordovician Missibbian and Devonian O	Atuur L Canyon Strawn Bend		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut Gorman Tanyard	Kft Ked Kft Kgru/ Kgru/ Kgru/ Koc Kch Ksy IPen IPsw IPsw IPmf Oh Og Ot Cws Cws	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Staendebach Mbr. Threadgill Mbr. San Saba Mbr.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds Ellenburger-San Saba Aquifer
Riley Cap Mth. Lmst. contining beds		Ordovician Missibbian and Devonian O	Atuur L Canyon Strawn Bend		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut Gorman Tanyard	Kft Ked Kft Kgr//Kgr//Kgr//Kgr Kgr//Kgr//Kgr Kgr//Kgr Kgr//Kgr Kgr//Kgr Kc Kch Kki Kch Ksy IPcn IPst IPst IPst IPst IPmf Oh Og Ot Cws Cwp	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Undivided Staendebach Mbr. Threadgill Mbr. San Saba Mbr. Point Peak Mbr. Morgan Creek Lmst.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds Ellenburger-San Saba Aquifer
Rilev		Ordovician Missibbian and Devonian O	Atuur L Canyon Strawn Bend		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut Gorman Tanyard	Kft Ked Kft Kgr//Kgr//Kgr//Kgr Kgr//Kgr//Kgr Kgr//Kgr Kgr//Kgr Kgr//Kgr Kc Kch Kki Kch Ksy IPcn IPst IPst IPst IPst IPmf Oh Og Ot Cws Cwp	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Staendebach Mbr. Threadgill Mbr. San Saba Mbr. Point Peak Mbr. Morgan Creek Lmst.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds Ellenburger-San Saba Aquifer confining beds
Crh Hickory Sandstone Hickory Aquifer		Ordovician Missibbian and Devonian O	Atuur L Canyon Strawn Bend		Fort Terrett Walnut Formation Glen Rose Lmst. Hensell Sand Bexar Shale Cow Creek Lmst. Hammett Shale Sycamore Sligo Sand Hosston Undivided Undivided Smithwick Marble Falls Lmst. ssippian and Devonian Undivided rocks Honeycut Gorman Tanyard Wilberns	Kft Ked Kft Kgru Kgru Kgru Kgru Kgru Kgru Kgru Kkra Kch Kkra Kch Ksy IPen IPsw IPst Oh Og Oh Og Cws Cwp Cwm Cwm	Dolomite Mbr. Burrowed Mbr. Upper Mbr. Lower Mbr. Undivided Undivided Undivided Staendebach Mbr. Threadgill Mbr. San Saba Mbr. Point Peak Mbr. Morgan Creek Lmst. Welge Sndst. Mbr. Lion Mtn. Sndst.	confining bed Lower Trinity Aquifer confining beds Marble Falls Aquifer usually confining beds Ellenburger-San Saba Aquifer confining beds Mid-Cambrian Aquifer

Figure 3: Geologic map and stratigraphic column (modified from McGeehee, 1979; Preston et. al, 1996)

= 6

III.3. Hydrogeology

Figure 4 provides a map of the major and minor aquifers within the area surrounding the subdivision. The major aquifer located within the subdivision is the Trinity Aquifer which encompasses most of Blanco County. Stratigraphically above the Trinity, the Edwards-Trinity (Plateau) Aquifer outcrops in small location on the subdivision. The aquifer's boundaries in Blanco County are defined by the location of where the Edwards Group is saturated. The Edwards Group provides relatively little water to wells and is not a significant a source of water to the subdivision.

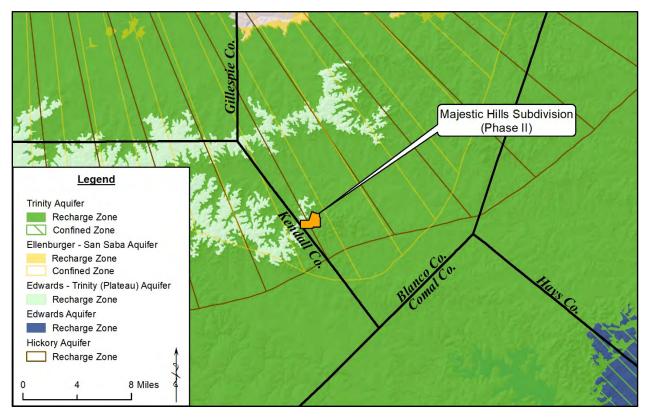


Figure 4: Aquifer map

The Trinity Aquifer in the Hill Country area spans as far north as Gillespie County and as far south as Bexar, Comal, and Hays County where fresh water can be produced. The Upper Trinity Aquifer typically produces poor quality water due to the presence of gypsum and anhydrite layers within the Upper Glen Rose Formation and typically produces lower quantities of water. The Middle Trinity Aquifer contains the Lower Glen Rose Limestone, Hensall Sand, and Cow Creek Limestone and is separated from the Upper Trinity Aquifer by the presence of a fossil marker bed called the Corbula Bed. The Corbula bed is a heavily fossiliferous layer that contains the small fossil clam called *Corbula martinae*. Typically, the highest yielding portion of the Trinity Aquifer is the Middle Trinity Aquifer, specifically the Lower Glen Rose Formation and the Cow Creek Limestone, making them more productive because of their enhanced ability to transmit groundwater. In some areas, the Lower Glen Rose Formation contains the presence of a reef deposit which greatly increases the yield of a well due to its high permeability. Well yield may be increased through acidization, with increases of two or three fold obtained in some instances. The Lower Trinity Aquifer is composed of conglomerates and sandstones that are, in some instances, heavily cemented.

The degree of cementing of these sediments controls the ability of water to move through the aquifer, thereby limiting the ability to produce large yielding wells. In localized areas, wells in the Lower Trinity Aquifer may produce moderate yields, although regionally the Middle Trinity Aquifer produces higher yielding wells with better quality water as compared to the Lower Trinity Aquifer.

The water quality of a well completed within the Middle Trinity Aquifer depends upon several factors, including the degree of fracturing, the amount of time the groundwater is in contact with the rock it is flowing through, and the minerals that compose the rock. For example, groundwater that flows through gypsum and anhydrite beds, which are composed of calcium sulfate (CaSO₄), will typically contain elevated levels of sulfate. Additionally, groundwater that has traveled a longer distance and has had longer contact time with aquifer sediments will also typically contain higher Total Dissolved Solids (TDS) than groundwater that has been in contact with the same rock for a shorter amount of time.

Underlying the Cretaceous rocks is the Ellenburger-San Saba Aquifer which extends from Coleman County south to Kendall County. The aquifer surrounds the Llano uplift and dips radially into the subsurface away from the center of the uplift. The aquifer is made up of the limestone and dolomite sequences of the Tanyard, Gorman, and Honeycut formations of the Ellenburger Group and the San Saba Limestone Member of the Wilberns Formation. Regional block faulting has left the aquifer highly compartmentalized and yields greatly depend on local geologic conditions. In the northern and northwestern portions of Blanco County significant development of subsurface solution features has occurred in the aquifer resulting in yields greater than 200 gpm. In most places the aquifer produces yields between 3 and 45 gpm with very good quality water, with the only concern being low to moderate hardness (Folleett, 1973).

The Hickory Aquifer is the basal aquifer within the subdivision. The Hickory aquifer has a similar structure to that of the Ellenburger-San Saba with a similar extent and a radial dip away from the Llano uplift. The aquifer consists of the Hickory Sandstone Member of the Riley Formation. The Hickory yields low to moderate quantities of water and water quality is variable. In Blanco County the quality can be fresh to saline with reports of yields up to 30 gpm (Folleett, 1973).

Section IV: Aquifer Testing

IV.1. Well Details

There are a total of eleven (11) wells located on the second phase of the subdivision. State Well No. 57-60-607 existed prior to commencement of this study while Wells No. 1 to No. 10 were recently constructed. The existing well was completed in the Upper Trinity and each of the newly constructed wells are completed in the Middle Trinity Aquifer. Figure 5 provides a map showing the locations of the wells on the property and includes all wells located within 1,000 ft. of the boundary. Figures 6 through 9 provide well profiles showing formation depths and well construction; Table 1 provides a well construction summary. Appendix B provides geophysical logs performed by BPGCD on Wells No. 2, No. 4, No. 6, No. 7, and No. 9; Appendix C provides the available state well reports for the wells.

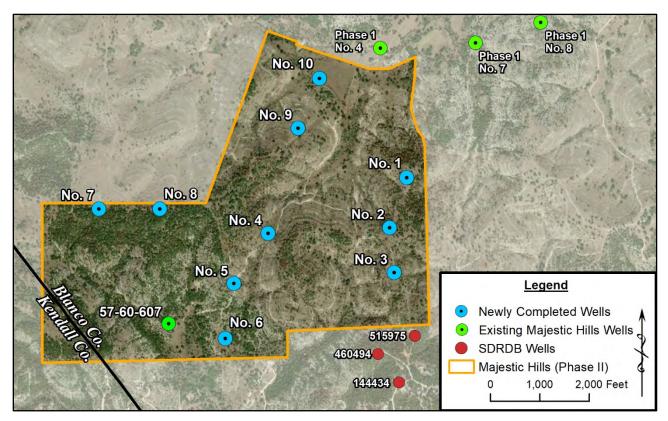


Figure 5: Well location map

To meet the guidelines for the Blanco County development rules and regulations and to adequately assess the availability of groundwater within the vicinity of the proposed subdivision, eight (8) different aquifer tests were conducted utilizing the newly completed Middle Trinity wells. The aquifer tests consisted of pumping one well for at least 24 hours followed by a recovery phase while measuring water levels in both the pumping and observation wells. This is in accordance with the testing procedures of the Texas Administrative Code (TAC) Title 30 Part 1 Chapter 230.8. Based on geophysical logs conducted by BPGCD on Wells No. 2, No. 4, No. 6, No. 7 and No. 9, the wells used in the tests are completed in the Middle Trinity Aquifer. The following provides a summary of the well construction for the ten (10) newly constructed wells used in the tests:

Well No. 1

According to the State Well Report (Tracking No. 522254), drilling of Well No. 1 was completed by Apex Drilling, Inc. on September 13, 2019. The well was drilled to a depth of 705 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 705 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 620 ft. bgl and 680 to 705 ft. bgl with 4 1/2-inch screen from 620 to 680 ft. bgl. The September 17, 2019 geophysical log run by BPGCD on Well No. 2 indicates that the well is screened in within the Hensell Sand and Cow Creek Limestone of the Middle Trinity Aquifer.

Well No. 2

According to the State Well Report (Tracking No. 522251), drilling of Well No. 2 was completed by Apex Drilling, Inc. on September 10, 2019. The well was drilled to a depth of 685 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 685 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 605 ft. bgl with 4 1/2-inch screen from 605 to 685 ft. bgl. The September 17, 2019 geophysical log run by BPGCD on the well indicates that the well is screened in within the Hensell Sand and Cow Creek Limestone of the Middle Trinity Aquifer.

Well No. 3

According to the State Well Report (Tracking No. 522252), drilling of Well No. 3 was completed by Apex Drilling, Inc. on September 12, 2019. The well was drilled to a depth of 665 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 665 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 505 ft. bgl, 525 to 585 ft. bgl, 605 to 625 ft. bgl, and 645 to 665 ft. bgl with 4 1/2-inch screen from 505 to 525 ft. bgl, 585 to 605 ft. bgl, and 625 to 645 ft. bgl. The September 17, 2019 geophysical log run by BPGCD on Well No. 2 indicates that the well is screened in within the Lower Glen Rose Limestone and Hensell Sand of the Middle Trinity Aquifer.

Well No. 4

According to the State Well Report (Tracking No. 522257), drilling of Well No. 4 was completed by Apex Drilling, Inc. on September 16, 2019. The well was drilled to a depth of 640 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 640 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 560 ft. bgl and 620 to 640 ft. bgl with 4 1/2-inch screen from 560 to 620 ft. bgl. The September 16, 2019 geophysical log run by BPGCD on the well indicates that the well is screened in within the Hensell Sand and Cow Creek Limestone of the Middle Trinity Aquifer.

Well No. 5

According to the State Well Report (Tracking No. 522250), drilling of Well No. 5 was completed by Apex Drilling, Inc. on September 9, 2019. The well was drilled to a depth of 500 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 500 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 300 ft. bgl, 320 to 420 ft. bgl, 440 to 460 ft. bgl, and 480 to 500 ft. bgl with 4 1/2-inch screen from 300 to 320 ft. bgl, 420 to 440 ft. bgl, and 460 to 480 ft. bgl. The September 16, 2019 and September 18, 2019 geophysical logs run by BPGCD of Well No. 4 and No. 6 indicate that the well is screened in within the Lower Glen Rose Limestone of the Middle Trinity Aquifer.

Well No. 6

According to the State Well Report (Tracking No. 522248), drilling of Well No. 6 was completed by Apex Drilling, Inc. on September 6, 2019. The well was drilled to a depth of 465 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 465 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 260 ft. bgl, 280 to 360 ft. bgl, 380 to 420 ft. bgl, and 440 to 460 ft. bgl with 4 1/2-inch screen from 260 to 280 ft. bgl, 360 to 380 ft. bgl, and 420 to 440 ft. bgl. The September 18, 2019 geophysical log run by BPGCD on the well indicates that the well is screened in within the Lower Glen Rose Limestone and Hensell Sand of the Middle Trinity Aquifer.

Well No. 7

According to the State Well Report (Tracking No. 522260), drilling of Well No. 7 was completed by Apex Drilling, Inc. on September 18, 2019. The well was drilled to a depth of 640 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 640 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 440 ft. bgl, 460 to 540 ft. bgl, 560 to 600 ft. bgl, and 620 to 640 ft. bgl with 4 1/2-inch screen from 440 to 460 ft. bgl, 540 to 560 ft. bgl, and 600 to 620 ft. bgl. The September 19, 2019 geophysical log run by BPGCD on the well indicates that the well is screened in within the Lower Glen Rose Limestone and Hensell Sand of the Middle Trinity Aquifer.

Well No. 8

According to the State Well Report (Tracking No. 522259), drilling of Well No. 8 was completed by Apex Drilling, Inc. on September 17, 2019. The well was drilled to a depth of 620 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 620 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 400 ft. bgl, 420 to 540 ft. bgl, 560 to 580 ft. bgl, and 600 to 620 ft. bgl with 4 1/2-inch screen from 400 to 420 ft. bgl, 540 to 560 ft. bgl, and 580 to 600 ft. bgl. The September 19, 2019 geophysical log run by BPGCD on Well No. 7 indicates that the well is screened in within the Lower Glen Rose Limestone and Hensell Sand of the Middle Trinity Aquifer.

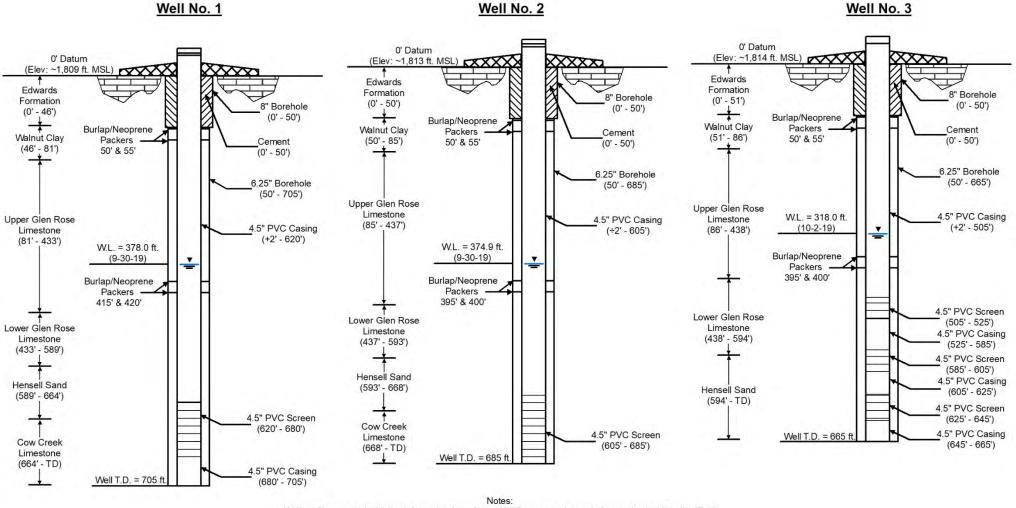
Well No.9

According to the State Well Report (Tracking No. 522256), drilling of Well No. 9 was completed by Apex Drilling, Inc. on September 14, 2019. The well was drilled to a depth of 565 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 565 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 465 ft. bgl with 4 1/2-inch screen from 465 to 565 ft. bgl. The September 16, 2019 geophysical log run by BPGCD on the well indicates that the well is screened in within the Lower Glen Rose Limestone and Hensell Sand of the Middle Trinity Aquifer.

Well No. 10

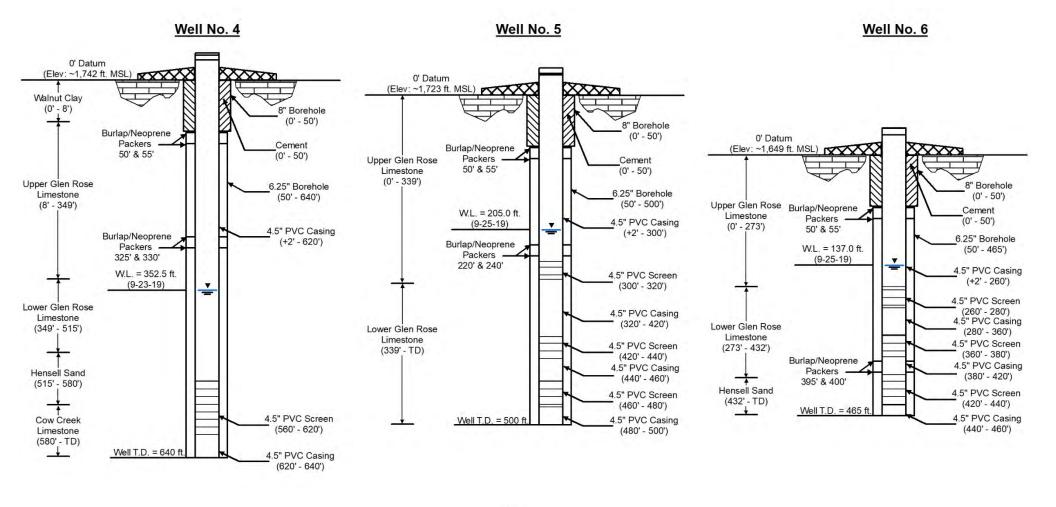
According to the State Well Report (Tracking No. 522247), drilling of Well No. 10 was completed by Apex Drilling, Inc. on September 3, 2019. The well was drilled to a depth of 505 ft. bgl with a 8-inch borehole from 0 to 50 ft. bgl and a 6 1/4-inch borehole from 50 to 505 ft. bgl. The well was completed with 4 1/2-inch PVC casing set from +2 to 405 ft. bgl, 425 to 445 ft. bgl, and 485 to 505 ft. bgl with 4 1/2-inch screen from 405 to 425 ft. bgl and 445 to 485 ft. bgl. The September 16, 2019 geophysical log run by BPGCD on Well No. 9 indicates that the well is screened within the Lower Glen Rose Limestone and Hensell Sand of the Middle Trinity Aquifer.

Well	Tracking No.	Latitude	Longitude	Elevation (ft. MSL)	Date Completed	Aquifer	Well Depth (ft. bgs)	Static Water Level (ft. bgs; date; ft. MSL)	Borehole (diameter; ft. bgs)	Casing (diameter; material; ft. bgs)	Screen (diameter; material; ft. bgs)
Well No. 1	522254	30° 03' 17" N	98° 29' 14" W	1,809	9/13/2019	Middle Trinity	705	378.0 (9/30/2019) 1,432.1	8" (0-50) 6 1/4" (50-705)	4 1/2" PVC (+2-620) (680-705)	4 1/2" PVC Screen (620-680)
Well No. 2	522251	30° 03' 07" N	98° 29' 18" W	1,813	9/10/2019	Middle Trinity	685	374.9 (9/30/2019) 1,438.1	8" (0-50) 6 1/4" (50-685)	4 1/2" PVC (+2-605)	4 1/2" PVC Screen (605-685)
Well No. 3	522252	30° 02' 58" N	98° 29' 17" W	1,814	9/12/2019	Middle Trinity	665	317.6 (10/2/2019) 1,496.4	8" (0-50) 6 1/4" (50-665)	4 1/2" PVC (+2-505) (525-585) (605-625) (645-665)	4 1/2" PVC Screen (505-525) (585-605) (625-645)
Well No. 4	522257	30° 03' 06" N	98° 29' 46" W	1,742	9/16/2019	Middle Trinity	640	352.5 (9/23/2019) 1,389.6	8" (0-50) 6 1/4" (50-640)	4 1/2" PVC (+2-560) (620-640)	4 1/2" PVC Screen (560-620)
Well No. 5	522250	30° 02' 56" N	98° 29' 54" W	1,723	9/9/2019	Middle Trinity	500	205.0 (9/25/19) 1,518.0	8" (0-50) 6 1/4" (50-500)	4 1/2" PVC (+2-300) (320-420) (440-460) (480-500)	4 1/2" PVC Screen (300-320) (420-440) (460-480)
Well No. 6	522248	30° 02' 45" N	98° 29' 56" W	1,649	9/6/2019	Middle Trinity	465	137.0 (9/25/19) 1,512.0	8" (0-50) 6 1/4" (50-465)	4 1/2" PVC (+2-260) (280-360) (380-420) (440-460)	4 1/2" PVC Screen (260-280) (360-380) (420-440)
Well No. 7	522260	30° 03' 11" N	98° 30' 25" W	1,852	9/18/2019	Middle Trinity	640	298.8 (10/7/2019) 1,553.3	8" (0-50) 6 1/4" (50-640)	4 1/2" PVC (+2-440) (460-540) (560-600) (620-640)	4 1/2" PVC Screen (440-460) (540-560) (600-620)

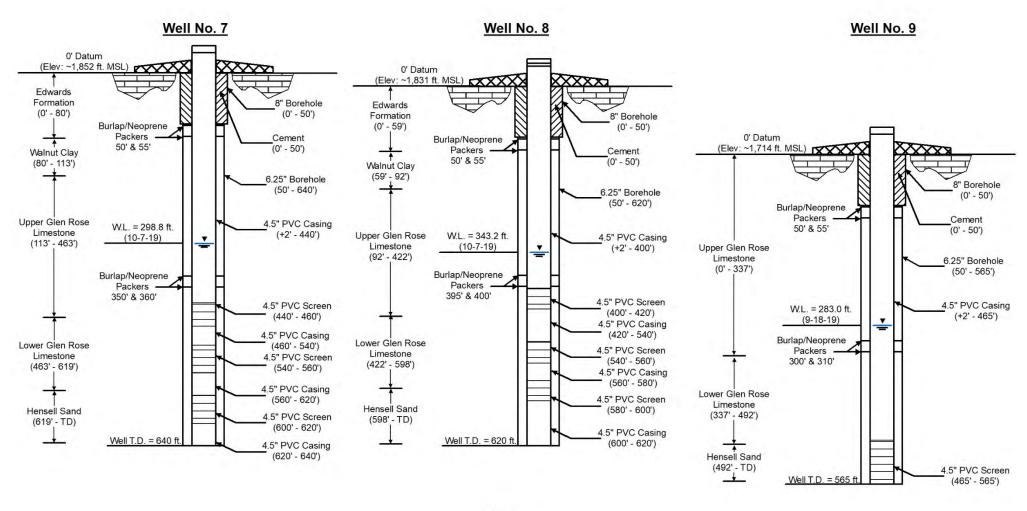

Table 1: Summary of Majestic Hills Phase II well construction

Well	Tracking No.	Latitude	Longitude	Elevation (ft. MSL)	Date Completed	Aquifer	Well Depth (ft. bgs)	Static Water Level (ft. bgs; date; ft. MSL)	Borehole (diameter; ft. bgs)	Casing (diameter; material; ft. bgs)	Screen (diameter; material; ft. bgs)
Well No. 8	522259	30° 03' 11" N	98° 30' 11" W	1,831	9/17/2019	Middle Trinity	620	343.2 (10/7/19) 1,487.8	8" (0-50) 6 1/4" (50-620)	4 1/2" PVC (+2-400) (420-540) (560-580) (600-620)	4 1/2" PVC Screen (400-420) (540-560) (580-600)
Well No. 9	522256	30° 03' 27" N	98° 29' 39" W	1,714	9/14/2019	Middle Trinity	565	283.0 (9/18/2019) 1,431.0	8" (0-50) 6 1/4" (50-565)	4 1/2" PVC (+2-465)	4 1/2" PVC Screen (465-565)
Well No. 10	522247	30° 03' 37" N	98° 29' 34" W	1,615	9/3/2019	Middle Trinity	505	191.1 (9/9/2019) 1,423.9	8" (0-50) 6 1/4" (50-505)	4 1/2" PVC (+2-405) (425-445) (485-505)	4 1/2" PVC Screen (405-425) (445-485)
St. Well	57-60-607	30° 02' 48" N	98° 30' 09" W	1,658	8/18/1967	Upper Trinity	110	72.1 (10/24/1968) 1,586.8	N/A	4 1/2" PVC (0-100)	4 1/2" PVC Screen (100-110)
Well Report	144434	30° 02' 36" N	98° 29' 16" W	1,827	6/2/2008	Middle Trinity	444	306.0 (6-2-2008) 1,521.0	8 5/8" (0-50) 6 3/4' (50-444)	5" PVC (+2-284) (304-364)	5" PVC Screen (284-304) (364-444)
Well Report	460494	30° 02' 41.7"N	98° 29' 20.8"W	1,762	9/12/2017	Middle Trinity	418	189.0 (9/12/2017) 1,573.0	9" (0-460)	4 1/2" PVC (+2-398) (398-418)	N/A
Well Report	515975	30° 02' 45.3"N	98° 29' 12.3"W	1,798	6/3/2019	Middle Trinity	418	272.0 (6/2/2019) 1,526.0	12" (0-7) 9' (7-460)	4 1/2" PVC (+2-338) (358-398) rt 460494 = 10, & Well Re	4 1/2" PVC Screen (338-358) (398-418)

Table 1: Summary of Majestic Hills Phase II well construction (continued)

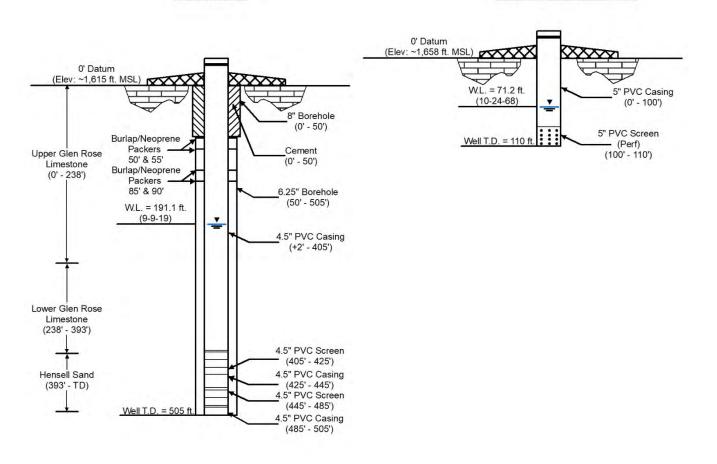


- Well profiles created with the information from State Well Reports and downhole geophysical logs (9-17-19). - Figure for schematic purposes; not drawn to scale.


Figure 6: Well construction profiles of Wells No. 1, No. 2, and No. 3

Notes: - Well profiles created with the information from State Well Reports and downhole geophysical logs (9-16-19) & (9-18-19). - Figure for schematic purposes; not drawn to scale.

Figure 7: Well construction profiles of Wells No. 4, No. 5, and No. 6



Notes: - Well profiles created with the information from State Well Reports and downhole geophysical logs (9-16-19) & (9-19-19). - Figure for schematic purposes; not drawn to scale.

Figure 8: Well construction profiles of Wells No. 7, No. 8, and No. 9

Well No. 10

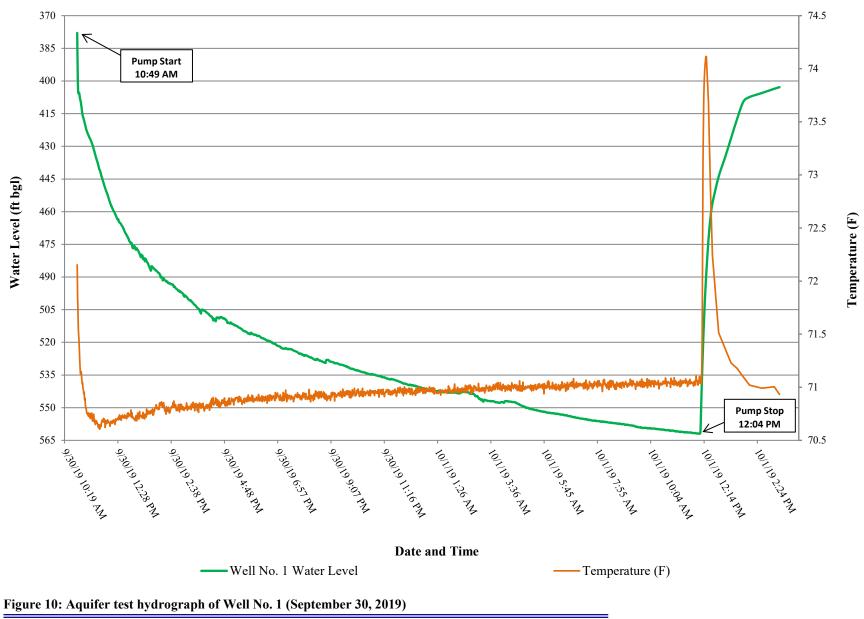
St. Well No. 57-60-607

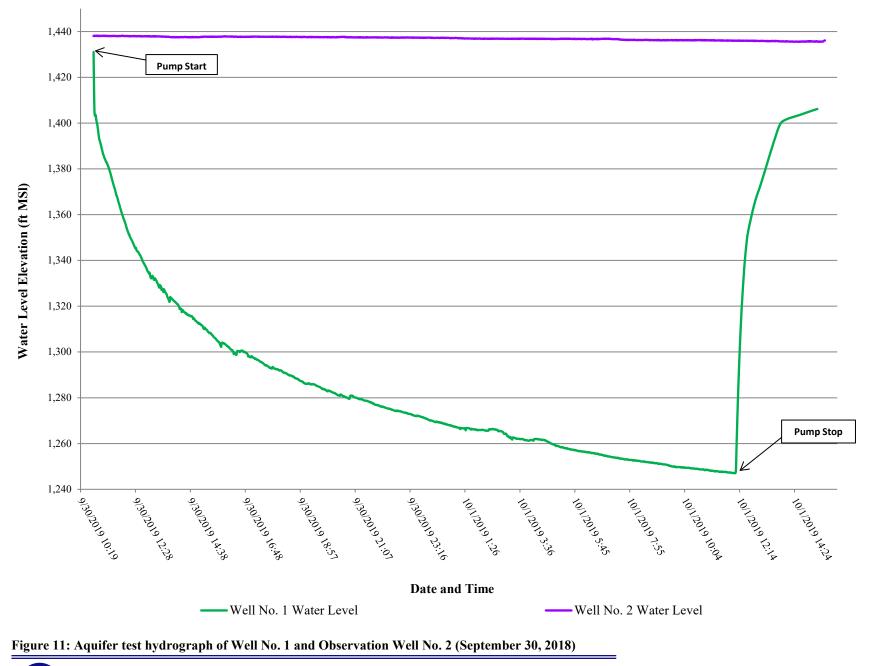
Notes: - Well profiles created with the information from State Well Reports and downhole geophysical logs (9-16-19). - Figure for schematic purposes; not drawn to scale.

Figure 9: Well construction profiles of Well No. 10 and St. Well No. 57-60-607

IV.2. Aquifer Testing

Eight (8) aquifer tests were performed to assess the hydrogeologic properties of the Middle Trinity Aquifer within the subdivision. For each aquifer test, Apex Drilling, Inc. set a submersible pump within the pumping well that was capable of varying its discharge rate. Prior to the start of the aquifer test, pressure transducers capable of measuring the water level and temperature at one minute intervals were placed in the pumping and observation wells to gather data for the duration of each test. Meter readings and water levels were taken prior to, during, and at the conclusion of the tests. Each aquifer test had at least a 24-hour pumping phase followed by a recovery phase. The data from the aquifer test was analyzed using the Cooper-Jacob method, Table 2 provides a summary of the aquifer testing results; Appendix D provides the results of the aquifer analysis; and Appendix E provides well efficiency calculations for each well.

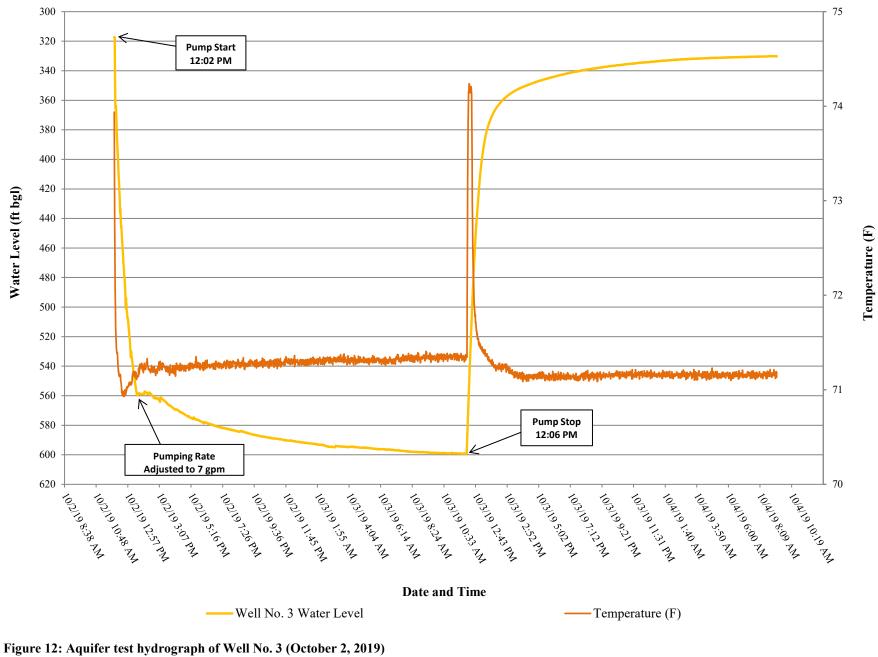

Aquifer Test of Well No. 1 (September 30, 2019):


The aquifer test of Well No. 1 (pumping well) was conducted on September 30, 2019 with Well No. 2 (observation well), approximately 1,070 ft. away from the pumping well. A 3 horsepower submersible pump was set in the pumping well on 660 feet of 1 1/4-inch PVC column pipe. The pump was started at 10:49 A.M. on September 30, 2019; the water level was monitored for 25.25 hours of pumping and 3.22 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 378.0 ft. bgl (1,432.1 ft. MSL) and the static water level of the observation well was measured at 374.9 ft. bgl (1,438.1 ft. MSL).

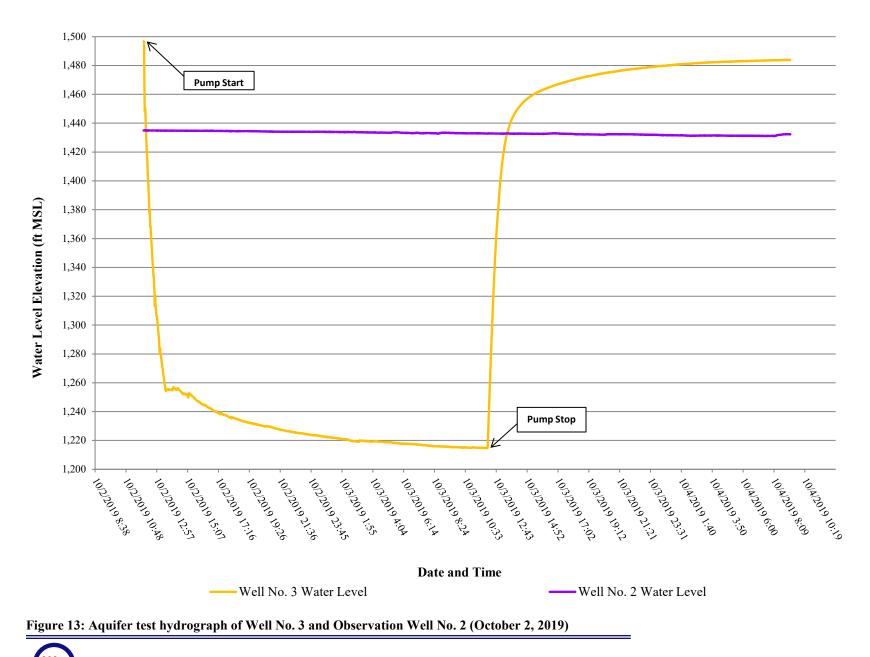
Well No. 1 was pumped at an average rate of 9.4 gpm and the final measured pump rate was 9.0 gpm with 183.84 feet of drawdown resulting in a specific capacity of 0.05 gpm/ft. When compared to the theoretical specific capacity (0.03 gpm/ft.), Well No. 1 produced at an efficiency of 117%. The Cooper-Jacob analysis resulted in a transmissivity of 6.7 ft²/day, and a hydraulic conductivity of 0.02 ft./day. A maximum drawdown of 2.18 feet was observed in Well No. 2 indicating a hydraulic connection between the two wells. Due to the observed hydraulic connection, we calculated a storativity value for Well No. 2 of 7.2 x 10^{-5} . Figure 10 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 11 provides a hydrograph of both the pumping and observation well over the duration of the test.

The water level within Well No. 1 declined steadily throughout most of the pumping phase reaching near a stable pumping level towards the latter portion of the pumping phase (Figure 10). Small fluctuations in water level during the pumping phase were observed which may indicate response to some well development occurring. The water level in the observation well indicated a small hydraulic response to pumping from Well No. 1 with approximately 2.18 ft. of measured drawdown (Figure 11). After the pump was shut off, recovery was measured in the pumping well; the water level in the pumping well recovered 86% in approximately 3.2 hours. There were no aquifer boundary conditions observed during the testing.

Wet Rock Groundwater Services, LLC \Diamond Groundwater Specialists


Aquifer Test of Well No. 3 (October 2, 2019):

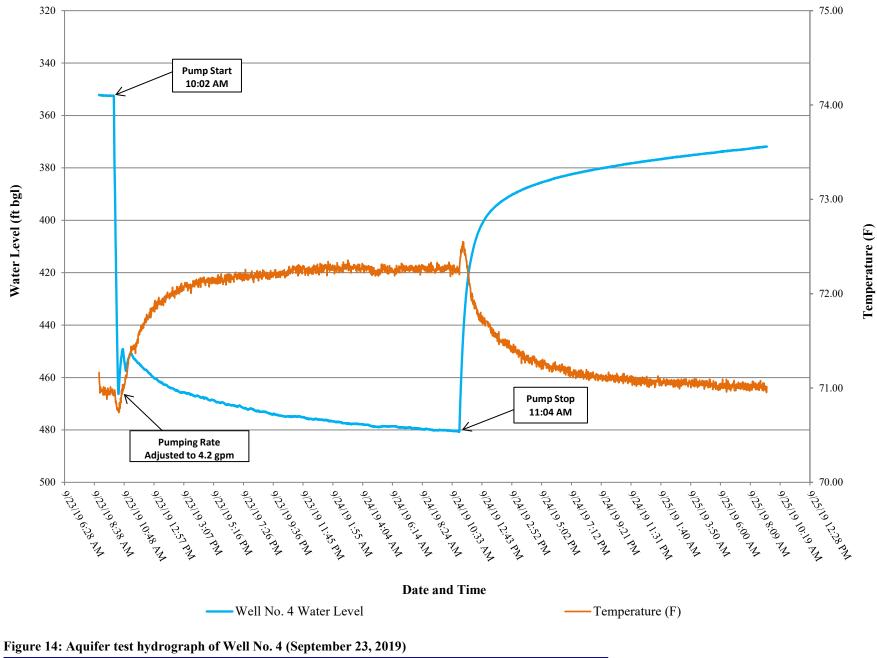
The aquifer test of Well No. 3 (pumping well) was conducted on October 2, 2019 with Well No. 2 (observation well), approximately 905 ft. away from the pumping well. A 3 horsepower submersible pump was set in the pumping well on 620 feet of 1 1/4-inch PVC column pipe. The pump was started at 12:04 P.M. on October 2, 2019; the water level was monitored for 24.03 hours of pumping and 21.2 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 317.6 ft. bgl (1,496.4 ft. MSL) and the static water level of the observation well was measured at 378.1 ft. bgl (1,434.1 ft. MSL).

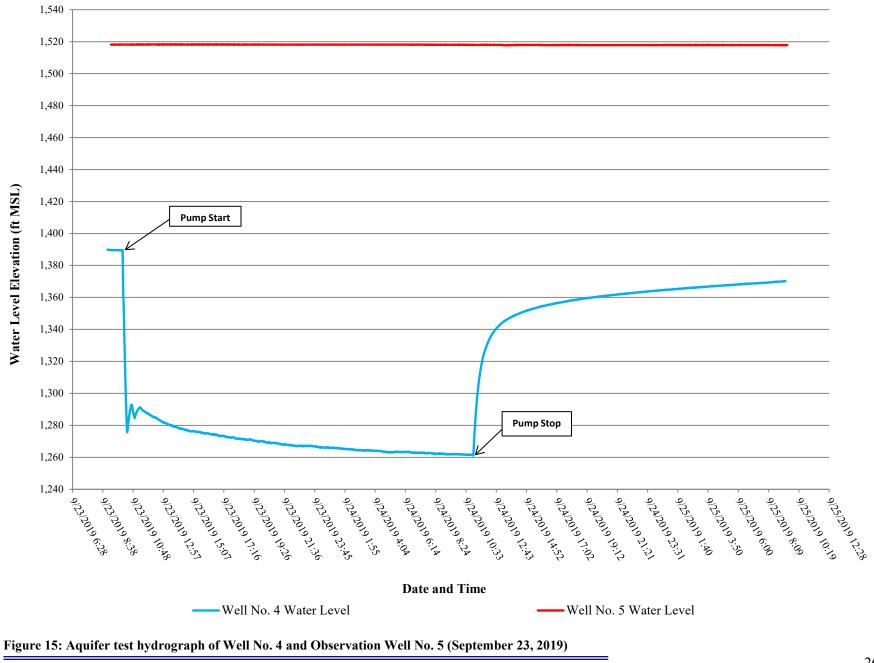

Well No. 3 was pumped at an initial rate of 12.5 gpm; however, in order to prevent the pumping level from reaching the pump, the discharge rate was reduced to approximately 7 gpm. The well produced at an average rate of 6.5 gpm over the 24-hour period and the final measured pump rate was 6.1 gpm with 281.78 feet of drawdown resulting in a specific capacity of 0.02 gpm/ft. When compared to the theoretical specific capacity (0.03 gpm/ft.), Well No. 3 produced at an efficiency of 67%. The Cooper-Jacob analysis resulted in a transmissivity of 6.7 ft²/day, and a hydraulic conductivity of 0.03 ft./day. A maximum drawdown of 3.84 feet was observed in Well No. 2 approximately 20 hours after the pumping well was shut off, indicating a hydraulic connection between the two wells. Due to the observed hydraulic connection, we calculated a storativity value for Well No. 2 of 4.5 x 10⁻⁵. Figure 12 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 13 provides a hydrograph of both the pumping and observation well over the duration of the test.

Approximately 90 minutes into the test, the pumping rate was adjusted to 7 gpm in Well No. 3 to prevent the water level from reaching the pump. After the pumping rate was adjusted, the water level slowly dropped throughout the duration of the pumping phase and stabilized at approximately 600 ft. bgl (Figure 12). According to the geophysical log of Well No. 2, Well No. 3 is screened within the Lower Glen Rose Limestone and Hensell Sand while Well No. 2 is screened within the Hensell Sand and Cow Creek Limestone; both wells have packers placed at the base of the Upper Glen Rose Limestone. The higher static water level observed in Well No. 3 may be attributed to the well also being screened within the Lower Glen Rose Limestone. The water level in the observation well slowly dropped throughout the test and displayed a delayed response to the shutting off of the pump at the end of the recovery phase (Figure 13). After the pump was shut off, recovery was measured in both wells; the water level in the pumping well recovered 90% in approximately 5.4 hours. There were no aquifer boundary conditions observed during the testing.

Wet Rock Groundwater Services, LLC \Diamond Groundwater Specialists

Wet Rock Groundwater Services, LLC \Diamond Groundwater Specialists

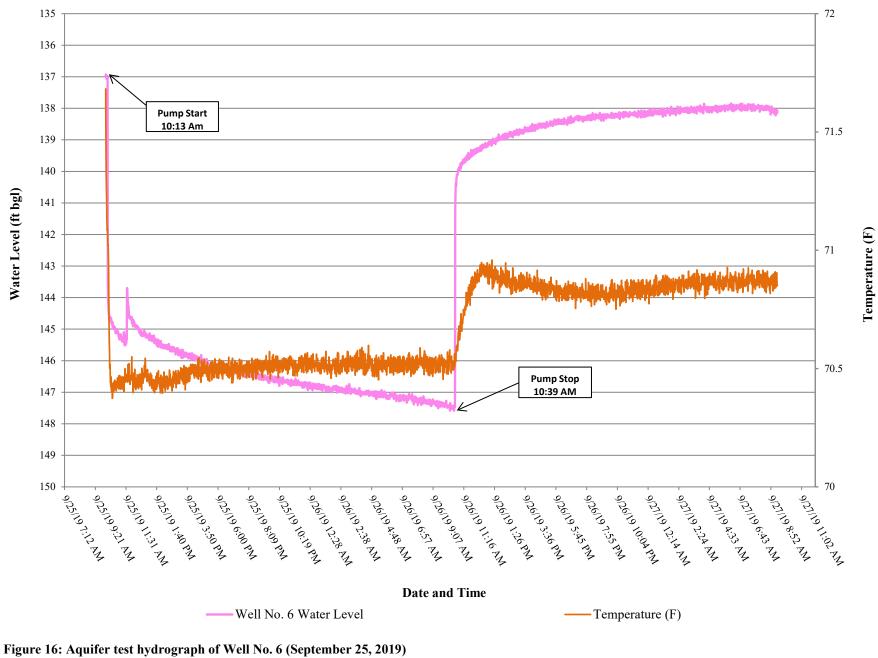

Aquifer Test of Well No. 4 (September 23, 2019):

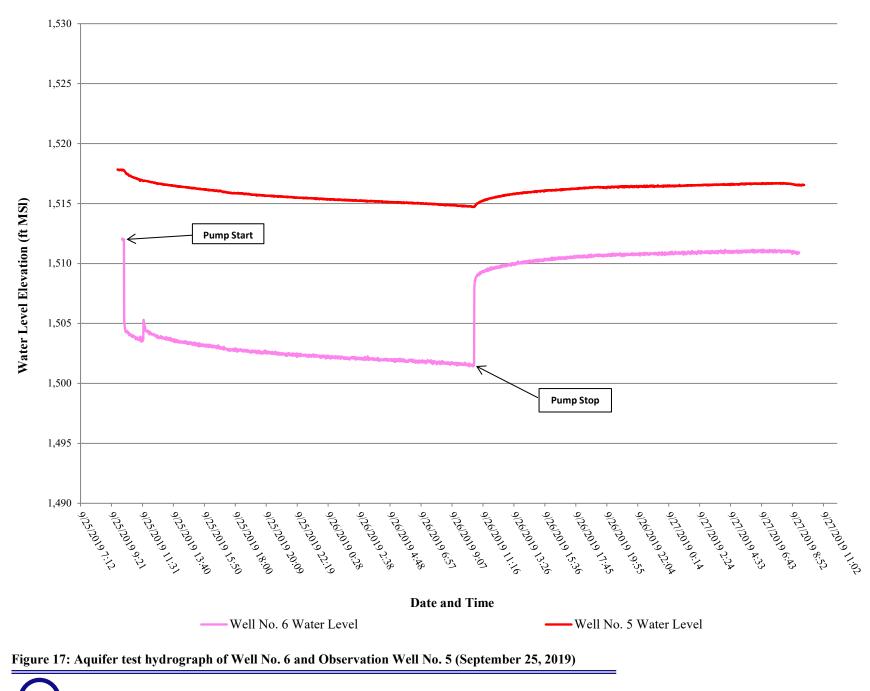

The aquifer test of Well No. 4 (pumping well) was conducted on September 23, 2019 with Well No. 5 (observation well), approximately 1,230 ft. away from the pumping well. A 3 horsepower submersible pump was set in the pumping well on 620 feet of 1 1/4-inch PVC column pipe. The pump was started at 10:02 A.M. on September 23, 2019; the water level was monitored for 25.02 hours of pumping and 22.17 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 352.5 ft. bgl (1,389.6 ft. MSL) and the static water level of the observation well was measured at 204.8 ft. bgl (1,518.7 ft. MSL).

Well No. 4 was pumped at an initial rate of 12.5 gpm; however, in order to prevent the pumping level from reaching the pump, the discharge rate was reduced to approximately 4.2 gpm. The well produced at an average rate of 4.2 gpm over the 25-hour period and the final measured pump rate was 4.0 gpm with 128.20 feet of drawdown resulting in a specific capacity of 0.03 gpm/ft. When compared to the theoretical specific capacity (0.03 gpm/ft.), Well No. 4 produced at an efficiency of 100%. The Cooper-Jacob analysis resulted in a transmissivity of 6.3 ft²/day, and a hydraulic conductivity of 0.02 ft./day. There was no observable drawdown within the observation well, therefore a storativity could not be calculated. Figure 14 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 15 provides a hydrograph of both the pumping and observation well over the duration of the test.

Approximately 3 minutes into the test, the pumping rate was adjusted to 4.2 gpm in Well No. 4 to prevent the water level from reaching the pump. After the pumping rate was adjusted, the water level slowly dropped throughout the duration of the pumping phase stabilizing at approximately 480 ft. bgl (Figure 14). According to the geophysical logs of Well No. 4 and No. 6, Well No. 5 is screened within the Lower Glen Rose Limestone while Well No. 4 is screened within the Hensell Sand and Cow Creek Limestone; both wells have packers placed at the base of the Upper Glen Rose Limestone. The higher static water level observed in Well No. 4 may be attributed to the well being screened within the Lower Glen Rose Limestone. The water level in the observation well did not show a noticeable response directly related to starting or stopping the pump in Well No. 4 and maintained a stable water level throughout the test (Figure 15). The yield of Well No. 5 was estimated by the driller to be 60 gpm. After the pump was shut off, the water level in the pumping well recovered 85% in approximately 22 hours. There were no aquifer boundary conditions observed during the testing.

Wet Rock Groundwater Services, LLC *(a) Groundwater Specialists*

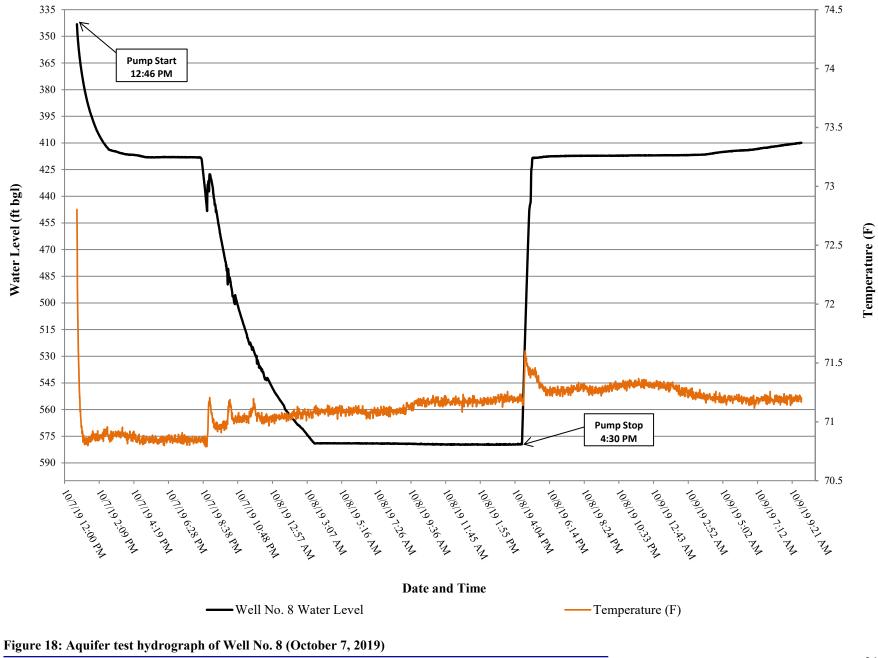

Aquifer Test of Well No. 6 (September 25, 2019):


The aquifer test of Well No. 6 (pumping well) was conducted on September 25, 2019 with Well No. 5 (observation well), approximately 1,126 ft. away from the pumping well. A 10-horsepower submersible pump was set in the pumping well on 420 feet of 2-inch PVC column pipe. The pump was started at 10:13 A.M. on September 25, 2019; the water level was monitored for 24.43 hours of pumping and 22 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 137.0 ft. bgl (1,512.0 ft. MSL) and the static water level of the observation well was measured at 205.2 ft. bgl (1,517.8 ft. MSL).

Well No. 6 was pumped at an average rate of 33.2 gpm and the final measured pump rate was 33.0 gpm with 10.49 feet of drawdown resulting in a specific capacity of 3.15 gpm/ft. When compared to the theoretical specific capacity (1.56 gpm/ft.), Well No. 6 produced at an efficiency of 202%. The Cooper-Jacob analysis resulted in a transmissivity of 492.4 ft^2/day , and a hydraulic conductivity of 2.56 ft./day. A maximum drawdown of 3.03 feet was observed in the observation well approximately 24 hours into the pumping phase. Due to the observed hydraulic connection, we calculated a storativity value for Well No. 5 of 3.8 x 10⁻⁵. Figure 16 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 17 provides a hydrograph of both the pumping and observation well over the duration of the test.

The water level in Well No. 6 initially stabilized early in the test at 145.5 ft. bgl then recovered approximately 2 ft. followed by a slow decline in water level throughout the pumping phase. This water level fluctuation may be due to a recharge boundary condition or more likely due to well development. After the fluctuation, the water level slowly dropped throughout the duration of the pumping phase (Figure 16). According to the geophysical logs of Well No. 4 and No. 6, Well No. 5 is screened within the Lower Glen Rose Limestone while Well No. 6 is screened within the Lower Glen Rose Limestone and Hensell Sand; both wells have packers placed in the Upper Glen Rose Limestone; Well No. 6 has a packer also placed in the Lower Glen Rose Limestone. The water level in the observation well showed a noticeable response directly related to starting and stopping the pump in Well No. 6 (Figure 17). After the pump was shut off, recovery was measured in both wells; the water level in the pumping well recovered 90% in approximately 18 hours. There were no aquifer boundary conditions observed during the testing.

Wet Rock Groundwater Services, LLC \Diamond Groundwater Specialists


Aquifer Test of Well No. 8 (October 7, 2019):

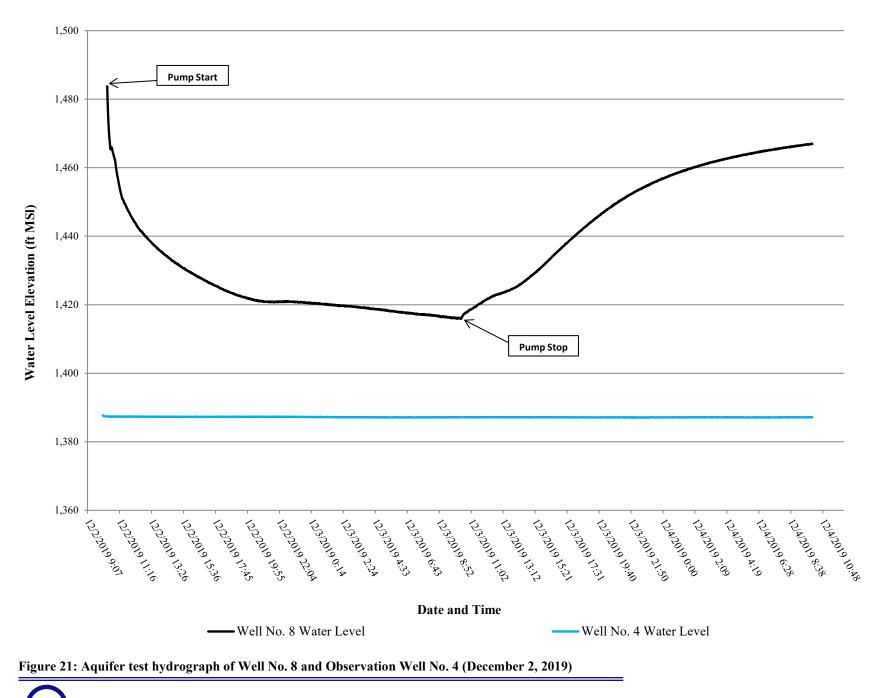
The aquifer test of Well No. 8 (pumping well) was conducted on October 7, 2019 with Well No. 7 (observation well), approximately 1,230 ft. away from the pumping well. A 3 horsepower submersible pump was set in the pumping well on 580 feet of 1 1/4-inch PVC column pipe. The pump was started at 12:46 P.M. on October 7, 2019; the water level was monitored for 27.73 hours of pumping and 17.43 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 343.2 ft. bgl (1,487.8 ft. MSL) and the static water level of the observation well was measured at 298.8 ft. bgl (1,553.3 ft. MSL).

Well No. 8 was pumped at an average rate of 9.0 gpm and the final measured pump rate was 7.2 gpm with 236.41 feet of drawdown resulting in a specific capacity of 0.03 gpm/ft. When compared to the theoretical specific capacity (0.02 gpm/ft.), Well No. 8 produced at an efficiency of 150%. The Cooper-Jacob analysis resulted in a transmissivity of 4.9 ft²/day, and a hydraulic conductivity of 0.03 ft./day. A maximum drawdown of 1.06 feet was observed in Well No. 7 indicating a hydraulic connection between the two wells. Due to the observed hydraulic connection, we calculated a storativity value for Well No. 7 of 2.2 x 10^{-5} . Figure 18 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 19 provides a hydrograph of both the pumping and observation well over the duration of the test.

Approximately two hours into the test, the pumping level in Well No. 8 stabilized at approximately 420 ft. bgl. The water level was stable at approximately 420 ft. bgl for approximately 6 hours before dropping 160 ft. to the pump where the pumping level remained for the duration of the pumping phase (Figure 18). The reduction in water level could be due to a number of factors including, fractures feeding the well drying out due to lowering of water levels or a no flow boundary condition. According to the geophysical log of Well No. 7, both wells are screened within the Lower Glen Rose Limestone and Hensell Sand with packers placed in the Upper Glen Rose Limestone. After the pump was shut off, recovery was measured in both wells; the water level in the pumping well recovered 71% in approximately 17.4 hours. During the recovery phase, the water level in the pumping well mirrored the pumping phase displaying a sharp recovery to approximately 420 ft. bgl before steadily rising for the rest of the recovery period.

Wet Rock Groundwater Services, LLC *Aroundwater Specialists*

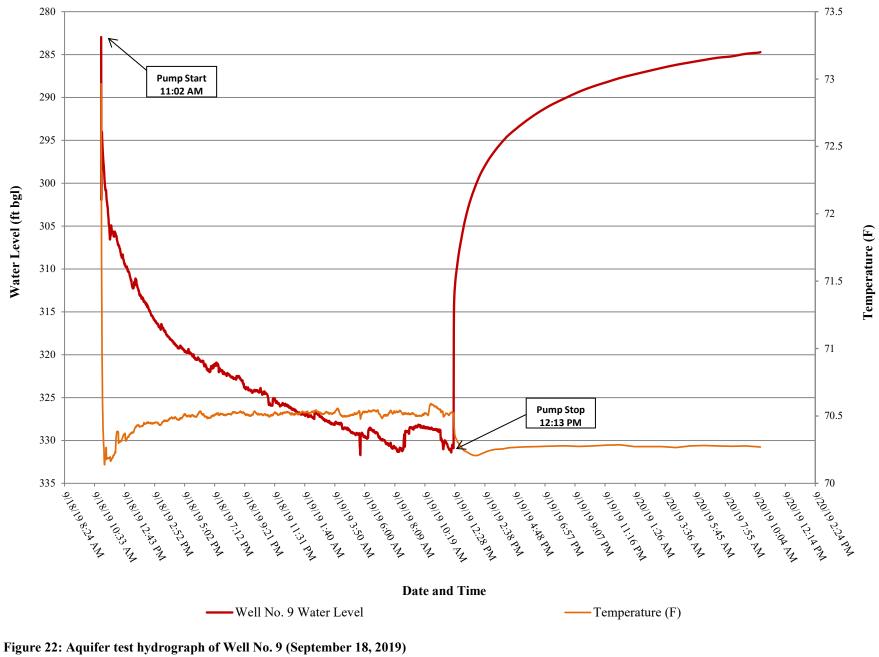
Aquifer Test of Well No. 8 (December 2, 2019):


The aquifer test of Well No. 8 (pumping well) was conducted on December 2, 2019 with Well No. 4 (observation well), approximately 2,255 ft. away from the pumping well. A 3 horsepower submersible pump was set in the pumping well on 580 feet of 1 1/4-inch PVC column pipe. The pump was started at 10:27 A.M. on December 2, 2019; the water level was monitored for 24.00 hours of pumping and 23.63 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 347.2 ft. bgl (1,483.8 ft. MSL) and the static water level of the observation well was measured at 354.6 ft. bgl (1,387.4 ft. MSL).

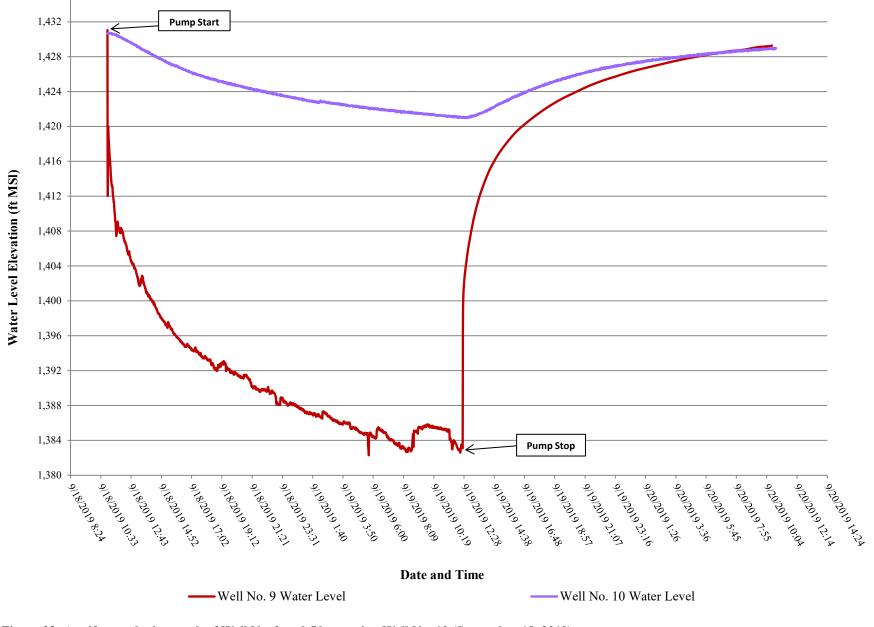
Well No. 8 was pumped at an average rate of 5.9 gpm and the final measured pump rate was 5.9 gpm with 67.16 feet of drawdown resulting in a specific capacity of 0.09 gpm/ft. When compared to the theoretical specific capacity (0.08 gpm/ft.), Well No. 8 produced at an efficiency of 112%. The Cooper-Jacob analysis resulted in a transmissivity of 21.2 ft²/day, and a hydraulic conductivity of 0.12 ft./day. There was no observable drawdown within the observation well, therefore a storativity could not be calculated. Figure 20 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 21 provides a hydrograph of both the pumping and observation well over the duration of the test.

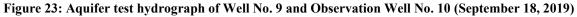
Approximately eleven (11) hours into the test, the pumping level in Well No. 8 stabilized at approximately 410 ft. bgl. The water level was stable at 410 ft. bgl for approximately one (1) hour before dropping 5 ft. over the rest of the pumping phase. The reduction in water level could be due to a number of factors including, fractures feeding the well drying out due to lowering of water levels or a no flow boundary condition. After the pump was shut off, recovery was measured in both wells; the water level in the pumping well recovered 75% in approximately 23.63 hours. During the recovery phase, the water level in the pumping well mirrored the pumping phase displaying a sharp recovery to approximately 408 ft. bgl before steadily rising for the rest of the recovery period.

Wet Rock Groundwater Services, LLC \Diamond Groundwater Specialists

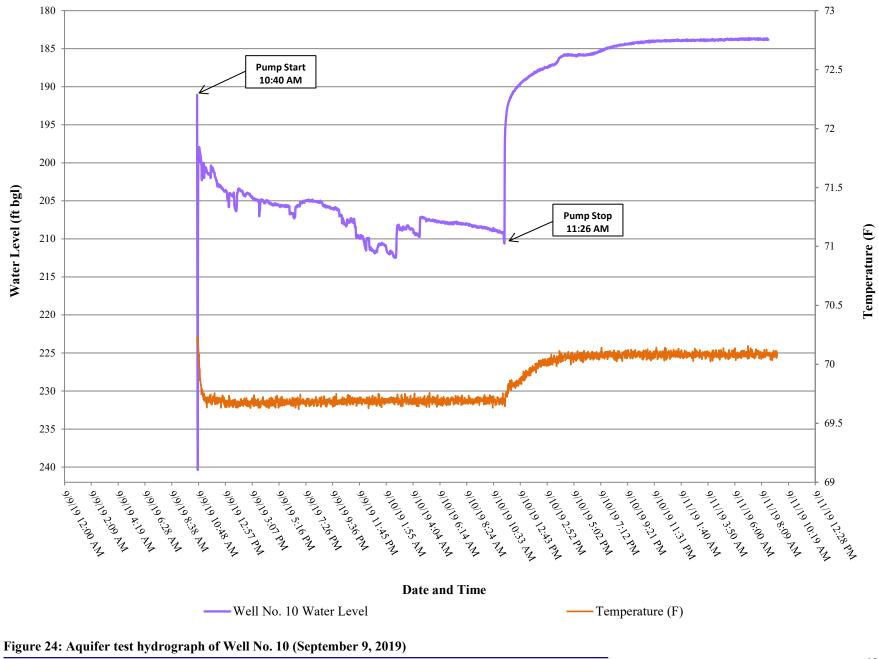

Aquifer Test of Well No. 9 (September 18, 2019):

The aquifer test of Well No. 9 (pumping well) was conducted on September 18, 2019 with Well No. 10 (observation well), approximately 1,102 ft. away from the pumping well. A 5 horsepower submersible pump was set in the pumping well on 520 feet of 1 1/4-inch PVC column pipe. The pump was started at 11:02 A.M. on September 18, 2019; the water level was monitored for 25.35 hours of pumping and 22.1 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 283.0 ft. bgl (1,431.0 ft. MSL) and the static water level of the observation well was measured at 184.4 ft. bgl (1,430.6 ft. MSL).

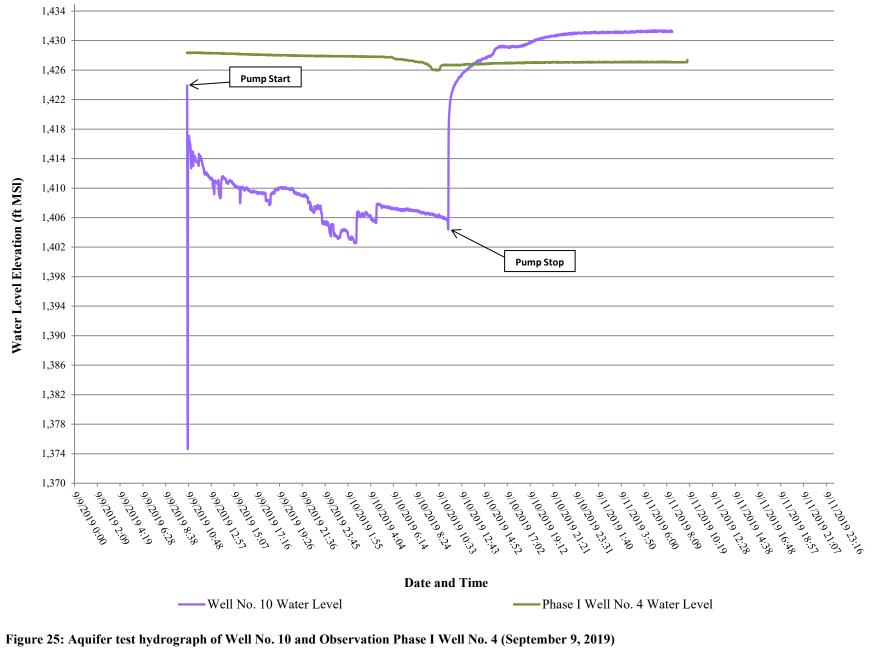

Well No. 9 was pumped at an average rate of 25.5 gpm and the final measured pump rate was 25.0 gpm with 47.95 feet of drawdown resulting in a specific capacity of 0.52 gpm/ft. When compared to the theoretical specific capacity (0.96 gpm/ft.), Well No. 4 produced at an efficiency of 54%. The Cooper-Jacob analysis resulted in a transmissivity of 158.3 ft²/day, and a hydraulic conductivity of 0.69 ft./day. A maximum drawdown of 9.66 feet was observed in the observation well indicating a hydraulic connection between the two wells. Due to the observed hydraulic connection, we calculated a storativity value for Well No. 10 of 1.7×10^{-5} . Figure 22 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 23 provides a hydrograph of both the pumping and observation well over the duration of the test.


The water level in Well No. 9 initially declined steadily reaching a stabilized pumping level near the end of the pumping phase. Fluctuations of approximately 1 to 3 feet in the pumping level were observed throughout the pumping phase with at one point near the end of the pumping phase the water level increased and leveled off for approximately 1.5 hours (Figure 20). The fluctuations could be due to a number of factors which include well development occurring during the pumping phase or an aquifer recharge boundary condition. The water level in the observation well did show an observable response directly related to starting or stopping the pump in Well No. 9 (Figure 21). After the pump was shut off, recovery was measured in the both of the wells; the water level in the pumping well recovered 90% in approximately 12 hours. There were no aquifer boundary conditions observed during the testing.

Wet Rock Groundwater Services, LLC *(a) Groundwater Specialists*


Aquifer Test of Well No. 10 (September 9, 2019):

The aquifer test of Well No. 10 (pumping well) was conducted on September 9, 2019 with Phase I Well No. 4 (observation well), approximately 1,372 ft. away from the pumping well. A 3 horsepower submersible pump was set in the pumping well on 460 feet of 1 1/4-inch PVC column pipe. The pump was started at 10:40 A.M.; the water level was monitored for 24.77 hours of pumping and 21.96 hours of recovery. Prior to the pumping phase of the aquifer test, the static water level of the pumping well was measured at 191.1 ft. bgl (1,423.9 ft. MSL) and the static water level of the observation well was measured at 204.8 ft. bgl (1,518.7 ft. MSL).


Well No. 10 was pumped at an average rate of 15.7 gpm and the final measured pump rate was 16.0 gpm with 19.53 feet of drawdown resulting in a specific capacity of 0.82 gpm/ft. When compared to the theoretical specific capacity (0.82 gpm/ft.), Well No. 10 produced at an efficiency of 149%. The Cooper-Jacob analysis resulted in a transmissivity of 155.2 ft²/day, and a hydraulic conductivity of 0.65 ft./day. A maximum drawdown of 1.98 feet was observed in the observation well indicating a hydraulic connection between the two wells. Due to the observed hydraulic connection, we calculated a storativity value for Phase I Well No. 4 of 1.2 x 10^{-4} . Figure 24 provides a hydrograph of the pumping well and temperature over the duration of the aquifer test; Figure 25 provides a hydrograph of both the pumping and observation well over the duration of the test.

During the first 3 minutes of the pumping phase, the water level rapidly declined by approximately 50 feet (Figure 22). After this initial drawdown, the pumping level returned to 198.8 ft. bgl and produced turbid water, which is indicative of well development. During the remainder of the pumping phase, the water level slowly declined with intermittent fluctuations ranging from approximately 1 to 4 feet (Figure 22). This could be due to continued development within the production interval of the well. The water level in the observation well displayed an observable response related to starting or stopping the pump in Well No. 10. Throughout the pumping phase, the water in the observation well drewdown steadily, with a small drop in water level near the end of the pumping phase (Figure 23). After the pump was shut off, recovery was measured in both wells; the water level in the pumping well recovered 90% in approximately 12 minutes. There were no aquifer boundary conditions observed during the testing.

Wet Rock Groundwater Services, LLC *(a) Groundwater Specialists*

Table 2: Summary of aquifer test results

Date	AverageFinal Pump RateDrawdown Capacity (gpm)Specific Capacity (gpm/ft.)		Transmissivity (ft²/d)			Well Efficiency	Aquifer Thickness (ft.)	Aquifer Boundary Detected			
9/30/2019	PW No. 1	9.4	9.0	183.84	0.05	6.7	-	0.02	117%	272	No
)/30/2017	OW No. 2	-	-	2.18	-	223.7	7.2E-5	0.9	-	248	No
10/2/2019	PW No. 3	6.5	6.1	281.78	0.02	6.7	-	0.03	67%	227	No
10/2/2019	OW No. 2	-	-	0.38	-	43.5	4.5E-5	0.18	-	248	No
9/23/2019	PW No. 4	4.2	4.0	128.20	0.03	6.3	-	0.02	100%	291	No
)/23/201)	OW No. 5	-	-	0.22	-	58.7	-	0.36	-	161	No
9/25/2019	PW No. 6	33.2	33.0	10.49	3.15	492.4	-	2.56	202%	192	No
7/25/2017	OW No. 5	-	-	3.03	-	574.4	3.8E-5	3.57	-	161	No
10/7/2019	PW No. 8	9.0	7.2	236.41	0.03	4.9	-	0.03	150%	172	Yes*
10/7/2019	OW No. 7	-	-	1.06	-	312.9	2.2E-05	1.77	-	177	No
12/2/2019	PW No. 8	5.9	5.9	67.16	0.09	21.2	-	0.12	112%	172	Yes*
12/2/2019	OW No. 4	-	-		-	223.4	-	0.77	-	291	No
9/18/2019	PW No. 9	25.5	25.0	47.95	0.52	158.3	-	0.69	54%	228	No
9/18/2019	OW No. 10	-	-	9.66	-	306.7	1.7E-5	1.29	-	238	No
	PW No. 10	15.7	16.0	19.53	0.82	155.2	-	0.65	149%	238	No
9/9/2019	OW Phase I No. 4	-	-	1.98	-	816.5	1.2E-4	2.84	-	287	No

Note: PW = Pumping Well; OW = Observation Well; ft. = feet; gpm = gallons per minute; d = day; *=Possible no flow boundary condition observed.

IV.3. Water Quality

Water quality samples were collected from each aquifer test's pumping well. The samples were collected by Apex Drilling, Inc. staff in sealed containers and stored on ice in a cooler. The samples for Well No. 10 were transported after collection to the Pollution Control Services Laboratories (PCSL), the samples for the rest of the wells were transported to Aqua-Tech Laboratories, Inc. and each sample was tested in accordance with Texas Administrative Code 230.9 (Determination of Groundwater Quality). Appendix F provides a copy of the water quality reports.

Table 3 provides the water quality summary of the samples. The results were compared to Texas Commission on Environmental Quality (TCEQ) Maximum Contaminant Levels (MCL) and Secondary Contaminant Levels (SCL). The results show all samples met the TCEQ MCLs. In various combinations, the concentrations of fluoride, iron, sulfate, or TDS surpassed the TCEQ SCLs in Wells No. 1, 4, 8, 9, and 10 (Table 2). The elevated sulfate and TDS concentrations observed in the wells are not uncommon for the area. Groundwater flowing through gypsum and anhydrite layers found within the aquifer account for the elevated sulfate and TDS. According to TWDB report 174 "Ground-Water Resources of Blanco County, Texas," elevated levels of iron and fluoride are also not uncommon for the area.

Concentrations above the SCL standards are not considered health risks but may affect the taste and odor of the water. The variability in water chemistry is likely due to the different formations of the Middle Trinity the wells are completed into. The two samples (Wells No. 1 and No. 4) that reported elevated sulfate and TDS concentrations are both completed deeper into the Cow Creek Limestone which may be a source of more elevated TDS and sulfate concentrations.

Table 3: Summary of the water quality analysis results

		Cl	Conductivity (mhos/cm)	F	Fe	NO3	Mn	рН	SO4	Hardness (as CaCO3)	TDS	TC/E. coli					
XX 7 H	Sample		TCEQ MCLs & SCLs														
Well	Data	300 ²		4 ¹ & 2 ²	0.3 ²	1 ¹	0.05 ²	6.5-8.5 ²	300 ²		1000 ²	Presence					
l	10/1/2019	13.6	1.28	2.08	0.092	< 0.02	0.00168	7.8	460	760	1,020	Absent					
3	10/3/2019	11.3	0.808	0.77	0.245	< 0.02	0.00767	7.6	256	545	682	Absent					
ł	9/24/2019	14.7	1.61	0.94	0.062	< 0.02	0.00175	7.3	624	980	1,380	Absent					
5	12/11/2018	11.1	0.679	1.94	0.149	< 0.02	0.00357	7.6	127	400	474	Absent					
3	10/8/2019	10.7	0.693	1.01	0.577	< 0.02	0.0117	7.4	154	500	516	Absent					
)	9/19/2019	<3	0.961	3.42	0.186	< 0.01	0.00223	7.3	<3.0	525	694	Absent					
0	9/10/2019	11.5	0.98*	3.91	< 0.050	0.0159	0.00214	7.67	231	524	654	Absent					

IV.4. Groundwater Availability

Based upon the analysis of the aquifer tests, drawdown estimates were made at various distances from each pumping well after 10 years and 30 years. Figures 26, 27 and 29 to 32 provide distancedrawdown plots for a single pumping well producing at a rate of 5 gpm for 1.17 hours a day (350 gallons per day). As Well No. 4 tested at a reduced rate, Figure 28 provides a distance-drawdown plot for a single pumping well producing at a rate of 4 gpm for 1.46 hours a day (350 gallons per day). This represents the total water demand at full build out of the subdivision per housing unit (0.39 acre-feet/year for each housing unit).

Assumptions used in the drawdown calculation include:

- Future pumpage from the aquifer or from interconnected aquifers from area wells outside of the subdivision or any other factor that cannot be predicted that will affect the storage of water in the aquifer;
- Long-term impacts to the aquifer based on climatic variations; and
- Future impacts to usable groundwater due to unforeseen or unpredictable contamination.

Drawdown estimates were calculated using the Theis equation. The Theis equation employs the following assumptions:

- 1. The water bearing formation is uniform in character and the hydraulic conductivity is the same in all directions;
- 2. The formation is uniform in thickness and infinite in areal extent;
- 3. The formation receives no recharge from any source;
- 4. The pumped well penetrates, and receives water from, the full thickness of the water bearing formation;
- 5. The water removed from storage is discharges instantaneously when the head is lowered;
- 6. The pumping well is 100% efficient;
- 7. All water removed from the well comes from aquifer storage;
- 8. Laminar flow exists throughout the well and aquifer; and
- 9. The water table or potentiometric surface has no slope.

It is important to note that several of the assumptions used to derive the Theis equation are not necessarily appropriate for the Middle Trinity Aquifer. These include assumptions 1, 3, 7 and 8. The Middle Trinity Aquifer is a karst aquifer and is fractured, not uniform or homogenous in character or in its hydrogeologic properties (transmissivity and storativity). In addition, the Theis assumptions that (i) the formation receives no recharge from any source and (ii) that all water removed from the well comes from aquifer storage leads to inaccuracies in estimating drawdown. Driscoll (1986) states, "The assumption that an aquifer receives no recharge during the pumping period is one of the six fundamental conditions upon which the non-equilibrium formulas (Theis) are based. Therefore, all water discharged from a well is assumed to be taken from storage within the aquifer. It is known, however that most formations receive recharge. Hydrographs from long-term observation wells monitored by the US Geological Survey, various

state agencies, and similar data-gathering agencies in other parts of the world show that most water-bearing formations receive continual or intermittent recharge."

Furthermore, contrary to the Theis assumptions, Konikow and Leake (2014) note that with increased pumping time, (i) the fraction of pumpage derived from storage tends to decrease, and (ii) the fraction derived from capture (recharge) increases. Eventually a new equilibrium will be achieved when no more water is derived from storage and heads, or water levels, in the aquifer stabilize. This result is achieved when the initial cone of depression formed by discharge reaches a new source of water, typically the recharge zone of the aquifer. The actual response time for an aquifer system to reach a new equilibrium is a function of the dimensions, hydraulic properties, and boundary conditions for each specific aquifer. For example, the response time will decrease as the hydraulic diffusivity of the aquifer increases (Theis 1940; Barlow and Leake 2012). The response time can range from days to millennia (Bredehoeft and Durbin 2009; Walton 2011).

Since the Theis equation assumes (i) that all water is derived from storage and (ii) that the aquifer receives no recharge, the Theis equation overestimates drawdown within a well that is located in an aquifer that receives recharge rapidly. For this reason, using the Theis equation to calculate drawdown over periods of time greater than when water from capture exceeds water from storage leads to an exaggerated estimate of drawdown.

Table 4 provides a summary of the results from the distance-drawdown calculations. Estimates of drawdown are based on the following assumptions:

- Total daily water demand (entire subdivision) = 45.48 acre-feet/year
- Total daily water demand (per housing unit) = 0.39 acre-feet/year = 350 gpd;
- The individual Wells No. 1, 3, 6, 8, 9, and 10 will be pumped at 5 gpm for 1.17 hours per day and Well No. 4 will be pumped at 4 gpm for 1.46 hours per day for Table 4;
- A transmissivity value and a storativity value taken from each individual aquifer test. The values from the first test of Well No. 8 were chosen to represent the well as a storativity value could be calculated from this test. The storativity value, used in the calculations for Well No. 4, was an average of the other tests because no hydraulic connection was observed between Well No. 4 and the observation well during the test.

The edge of the cone of depression was estimated by taking the distance from the pumped well where the drawdown flattened out or was minimal.

Based upon the distance-drawdown calculations, the drawdown after 10 years of production and a well spacing of 100 feet results in an average of 10.2 ft. (drawdown) well interference. At a spacing of 250 feet the well interference reduces to an average of 4.8 ft. (drawdown) and at a spacing of 500 feet the well interference reduces further to an average of 3.1 ft. (drawdown).

The drawdown after 30 years of production and a well spacing of 100 feet results in an average of 10.7 ft. (drawdown) well interference. At a spacing of 250 feet the well interference reduces to an average of 4.9 ft. (drawdown) and at a spacing of 500 feet the well interference reduces further to an average of 3.6

ft. (drawdown).

Due to the limited well interference calculated, we recommend a well spacing of 250 feet.

	Drawdown at Pumped Well After 10-Years of Pumping	Drawdown at Pumped Well After 30-Years of Pumping	Property B	n at Nearest oundary After of Pumping	Property Bo	n at Nearest undary After of Pumping	Dist. to Outer Edges of Cone of Depression - 10 years	Dist. to Outer Edges of Cone of Depression - 30 years		
Well	(ft)	(ft)	Property Boundary Distance (ft)	Drawdown (ft)	Property Boundary Distance (ft)	Drawdown (ft)	(feet)	(feet)		
No. 1	143.5	144.1	374	4.5	374	5.1	250	250		
No. 3	148.8	149.4	677	4.0	677	4.6	300	300		
No. 4	127.4	128.0	1,411	3.6	1,411	4.2	350	350		
No. 6	2.72	2.7	411	0.4	411	0.4	100	100		
No. 8	208.8	209.7	113	10.0	113	10.8	300	300		
No. 9	8.3	8.3	1,254	0.4	1,254	0.4	100	100		
No. 10	7.5	7.5	1,320	0.2	1,320	0.2	100	100		

Table 4: Summary of distance-drawdown calculations

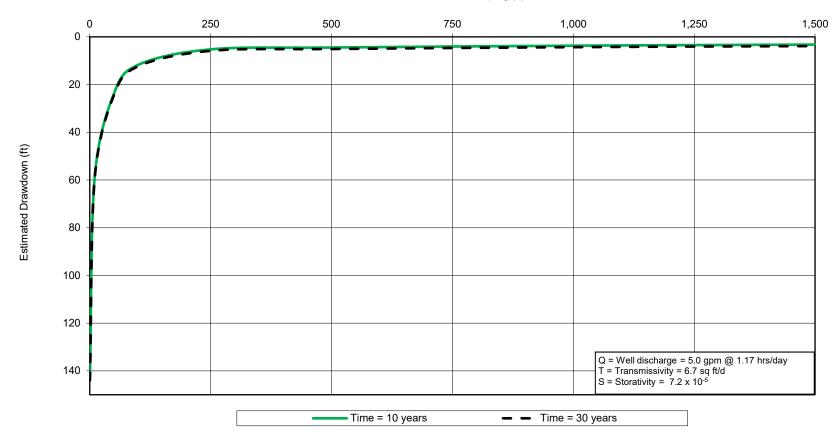


Figure 26: Distance drawdown plot for Well No. 1

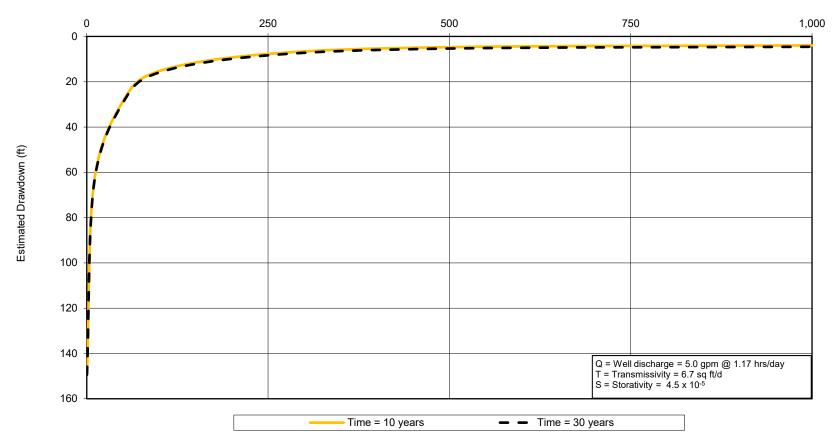


Figure 27: Distance drawdown plot for Well No. 3

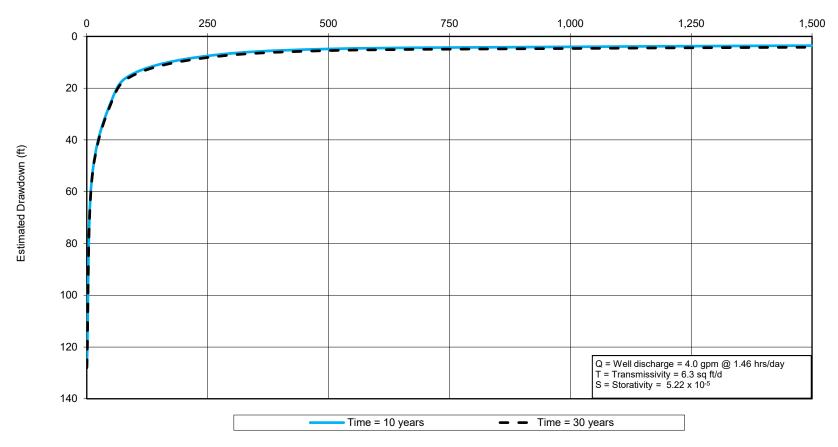


Figure 28: Distance drawdown plot for Well No. 4

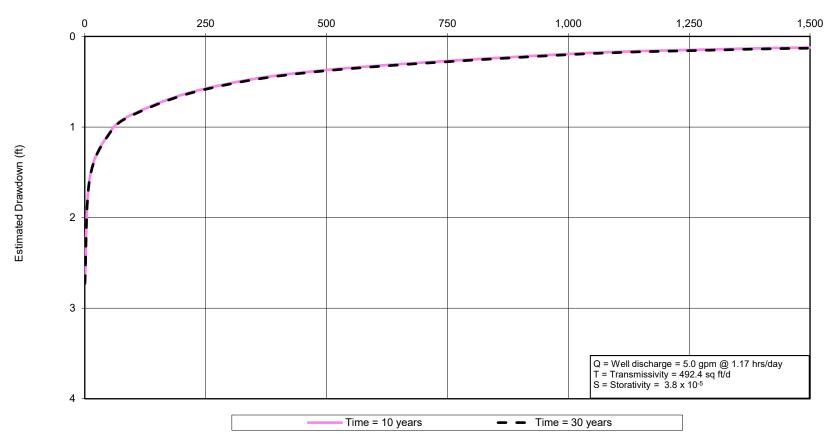


Figure 29: Distance drawdown plot for Well No. 6

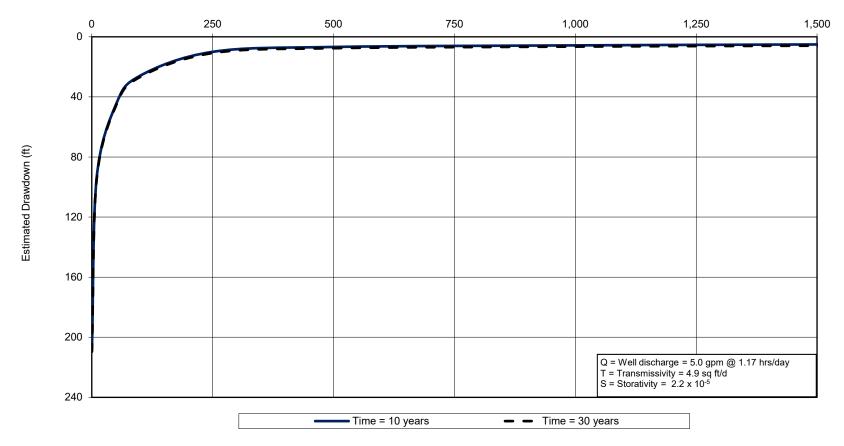


Figure 30: Distance drawdown plot for Well No. 8

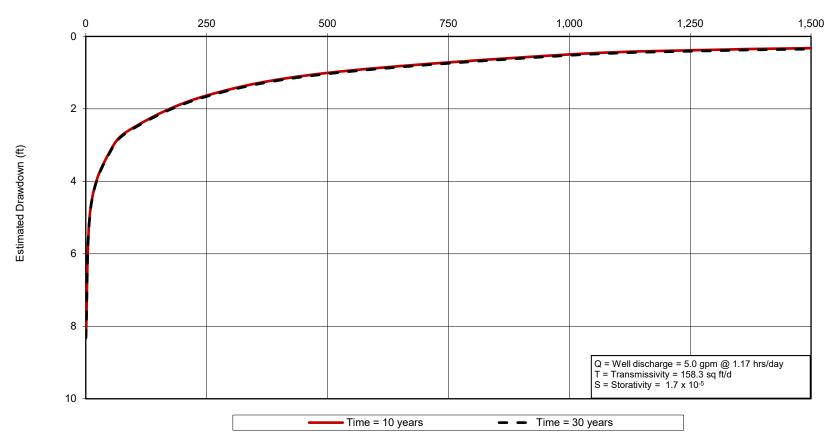


Figure 31: Distance drawdown plot for Well No. 9

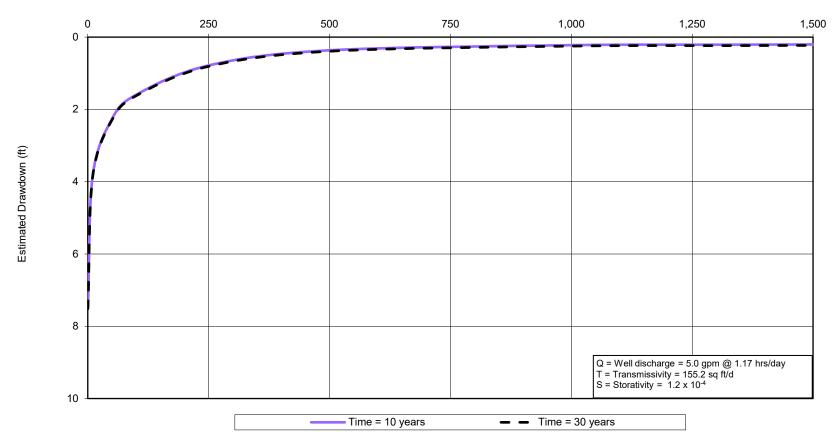


Figure 32: Distance drawdown plot for Well No. 10

Section V: Certification

I, Kaveh Khorzad, Texas Licensed Professional Geoscientist, certificate number 1126, based on best judgment, current groundwater conditions, and the information developed and presented in this form, certify that adequate groundwater is available from the underlying aquifer to supply the anticipated use of the proposed subdivision.

The Middle Trinity Aquifer in Blanco County exhibits variable yield and water quality and is susceptible to reduction in yield during prolonged drought. For these reasons we recommend that each homeowner construct their well as deep as practical to the base of the Hensell Sand or Cow Creek Limestone within the Middle Trinity Aquifer to provide the maximum possible yield and to set their pumps as deep as possible to protect from lowering water levels during drought.

Section VI: References

- Ashworth, J. B., 1983, Ground-water availability of the Lower Cretaceous formations in the Hill Country of south-central Texas: Texas Department of Water Resources Report 273,173 p.
- Barlow, P.M., and Leake, S.A., 2012. Streamflow depletion by wells—Understanding and managing the effects of groundwater pumping on streamflow. U.S. Geological Survey Circular 1376. Reston, Virginia: USGS.
- Bredehoeft, J.D., and T.J. Durbin. 2009. Ground water development—The time to full capture problem. Ground Water 47, no. 4: 506–514. DOI:10.1111/j.1745-6584.2008. 00538.x
- Driscoll, F.G., 1986. Groundwater and Wells (2nd. Ed.): Johnson Division, St. Paul, Minnesota, p. 1021.
- Folleet, C.R., 1973. Ground-Water Resources of Blanco County, Texas: Texas Department of Water Resources Report 174.
- Konikow L.F. and Leake S.A., 2014, Depletion and Capture: Revisiting "The Source of Water Derived from Wells", Vol. 52, Groundwater–Focus Issue 2014, p. 100–111.
- McGeehee, R.V., 1979. Precambrian Rocks of the Southeastern Llano Region, Texas. Texas Bureau of Economic Geology, Geological Circular 79-3, 36 p.
- Preston, R.D., Pavilcek, D.J., Bluntzer, R.L., and Derton, J., 1996. The Paleozoic and Related Aquifers of Central Texas. TWDB Report 346, 77 p.
- Theis, C.V. 1940. The source of water derived from wells—Essential factors controlling the response of an aquifer to development. Civil Engineering 10: 277–280.
- Walton, W.C. 2011. Aquifer system response time and groundwater supply management. Ground Water 49, no. 2: 126–127.

Appendix A

Certification of Groundwater Availability for Platting Form

CERTIFICATION OF GROUNDWATER AVAILABILITY FOR PLATTING FORM

Use of this form: If required by a municipal authority pursuant to §212.0101, Texas Local Government Code or a county authority pursuant to §232.0031, Texas Local Government Code, the plat applicant and the Texas licensed professional engineer or Texas licensed professional geoscientist shall use this form based upon the requirements of Title 30, Texas Administrative Code, Chapter 230 to certify that adequate groundwater is available under the land to be subdivided (if the source of water for the subdivision is groundwater under the subdivision) for any subdivision subject to platting under §§212.004 and 232.001, Texas Local Government Code. The form and Chapter 230 do not replace state requirements applicable to public drinking water supply systems or the authority of counties or groundwater conservation districts under either §35.019 or Chapter 36 of the Texas Water Code.

Administrative Information (30 TAC, §230.4).

1. 2.	Name of Proposed Subdivision: <u>Majestic Hills Subdivision Phase II</u> Any Previous Name Which Identifies the Tract of Land:
3.	Property Owner's Name(s): Lone Star Land Partners, LLC Address: 9508 East Highway 71 Spicewood, Texas 78669 Phone: 800-511-2430 Fax:
4.	Plat Applicant's Name: Lone Star Land Partners, LLC Address: 9508 East Highway 71 Spicewood, Texas 78669 Phone: 877-888-7579 Fax:
5.	Licensed Professional Engineer or Geoscientist Name: <u>Kaveh Khorzad, P.G.</u> Address: <u>317 Ranch Road 620 S., Suite 203, Lakeway, TX 78734</u> Phone: <u>512-773-3226</u> Fax: Certificate Number: <u>TBPG License No: 1126</u>
6.	Location and Property Description of Proposed Subdivision: <u>approximately 3.5 miles southwest of</u> the City of Blanco located south of Trainer Wuest Rd. along Carolina Trail
7.	Tax Assessor Parcel Number(s). Book: Map: Parcel: <u>property IDs: 7792, 7800, 7786, and 7787</u>
Propo 8.	sed Subdivision Information (30 TAC, §230.5). Purpose of Proposed Subdivision (single family/multi-family residential, non-residential, commercial):
9. 10. 11. 12.	Size of Proposed Subdivision (acres): 789 Number of Proposed Lots: 116 Average Size of Proposed Lots (acres): 6.16 Anticipated Method of Water Distribution. Expansion of Existing Public Water Supply System: Yes New (Proposed) Public Water Supply System: Yes No Individual Water Wells to Serve Individual Lots: Image: No Combination of Methods: Yes Yes Description (if needed): Image: Yes Yes
13.	Additional Information (if required by the municipal or county authority):

Note: If public water supply system is anticipated, written application for service to existing water providers within a ½-mile radius should be attached to this form (30 TAC §230.5(f)).

Projected Water Demand Estimate (30 TAC, §230.6).

14. Residential Water Demand Estimate at Full Build Out (includes both single family and multi-family residential). Number of Proposed Housing Units (single and multi-family): 116 single family housing units Average Number of Persons per Housing Unit: 3.5 persons

Gallons of Water Required per Person per Day: 100 gallons per capita per day (gpcd)

Water Demand per Housing Unit per year (acre feet/year):0.39 acre-ft (assuming 100 gpcd)

Total Expected Residential Water Demand per Year (acre feet/year): 45.48 acre-ft

15. Non-residential Water Demand Estimate at Full Build Out.

Type(s) of Non-residential Water Uses: N/A

Water Demand per Type per Year (acre feet/year): N/A

- 16. Total Water Demand Estimate at Full Build Out (acre feet/year): 45.48 acre-ft/year
- 17. Sources of Information Used for Demand Estimates: Blanco County development rule and regulations

General Groundwater Resource Information (30 TAC, §230.7).

18. Identify and describe, using Texas Water Development Board names, the aquifer(s) which underlies the proposed subdivision:

Note: Users may refer to Aquifers of Texas (Texas Water Development Board Report 345, 1995) to obtain general information pertaining to the state's aquifers. This reference is available via the Internet (www.twdb.state.tx.us). Trinity Aquifer

Obtaining Site-Specific Groundwater Data (30 TAC, §230.8).

- 19. Have all known existing, abandoned, and inoperative wells within the proposed subdivision been located, identified, and shown on the plat as required under §230.8(b)? No
- 20. Were the geologic and groundwater resource factors identified under §230.7(b) considered in planning and designing the aquifer test required under §230.8(c)?
- 21. Have test and observation wells been located, drilled, logged, completed, developed, and shown on the plat as required by \$230.8(c)(1 though 4)? (e) No
- 22. Have all reasonable precautions been taken to ensure that contaminants do not reach the subsurface environment and that undesirable groundwater has been confined to the zone(s) of origin (§230.8(c)(5))? (es) No

No

No

No

Yes

No

No

(es

No

No

No

No

No

- 23. Has an aquifer test been conducted which meets the requirements of §§230.8(c)(1 and 6)?
- 24. Were existing wells or previous aquifer test data used?
- 25. If yes, did they meet the requirements of §230.8(c)(7)?

26. Were additional observation wells or aquifer testing utilized?

Note: If expansion of an existing public water supply system or a new public water supply system is the anticipated method of water distribution for the proposed subdivision, site-specific groundwater data shall be developed under the requirements of 30 TAC, Chapter 290, Subchapter D (related to Rules and Regulations for Public Water Systems) and the applicable information and correspondence developed in meeting those requirements shall be attached to this form pursuant to §230.8(a).

(e)

Determination of Groundwater Quality (30 TAC, §230.9).

- 27. Have water quality samples been collected as required by §230.9?
- 28. Has a water quality analysis been performed which meets the requirements of §230.9?

Determination of Groundwater Availability (30 TAC, §230.10).

- 29. Have the aquifer parameters required by §230.10(c) been determined?
- 30. If so, provide the aquifer parameters as determined.

Rate of yield and drawdown: (See attached Table 2)

Specific capacity: (See attached Table 2 & Appendix D)

Efficiency of the pumped well: (See attached Table 2 & Appendix E)

- Transmissivity: (See attached Table 2 & Appendix D)
 - Coefficient of storage: (See attached Table 2)
 - Hydraulic conductivity: (See attached Table 2 & Appendix D)
 - Were any recharge or barrier boundaries detected?

If yes, please describe:

Thickness of aquifer(s): (See Table 2 & Appendix D)

- 31. Have time-drawdown determinations been calculated as required under §230.10(d)(1)
- 32. Have distance-drawdown determinations been calculated as required under §230.10(d)(2)?
- 33. Have well interference determinations been made as required under §230.10(d)(3)?
- 34. Has the anticipated method of water delivery, the annual groundwater demand estimates at full build out, and geologic and groundwater information been taken into account in making these determinations? No

Yes

(N)

35. Has the water quality analysis required under §230.9 been compared to primary and secondary public drinking water standards as required under §230.10(e)? (e) No

	Does the concentration of any analyzed constituent exceed the standards? Yes
	If yes, please list the constituent(s) and concentration measure(s) which exceed standards: See Section IV.3
Grou	ndwater Availability and Usability Statements (30 TAC, §230.11(a)and (b)).
36.	Drawdown of the aquifer at the pumped well(s) is estimated to be feet over a 10-year period and feet over
	a 30-year period. See Attached Table 4 & 5
37.	Drawdown of the aquifer at the property boundary is estimated to be feet over a 10-year period and feet over a 30-year period. See Attached Table 4 & 5
38.	The distance from the pumped well(s) to the outer edges of the cone(s)-of-depression is estimated to be feet over a
	10-year period and feet over a 30-year period. See Attached Table 4 & 5
39.	The recommended minimum spacing limit between wells is <u>250</u> feet with a recommended well yield of <u>5</u> gallons per minute per well.
40.	Available groundwater (is) is not (circle one) of sufficient quality to meet the intended use of the platted subdivision.
41.	The groundwater availability determination does not consider the following conditions (identify any assumptions or uncertainties that are inherent in the groundwater availability determination): See Appendices.
Certif	ication of Groundwater Availability (30 TAC, §230.11(c)). Must be signed by a Texas Licensed Professional Engineer or a
	Licensed Professional Geoscientist.
42.	I, <u>Kaveh Khorzad</u> , Texas Licensed Professional Engineer or Texas Licensed Professional Geoscientist (circle which applies), certificate number <u>1126</u> , based on best professional judgement, current groundwater conditions, and the
	information developed and presented in this form, certify that adequate groundwater is available from the underlying aquifer(s)
	to supply the anticipated use of the proposed subdivision.
	Date: 12/6/2019 (affix seal)

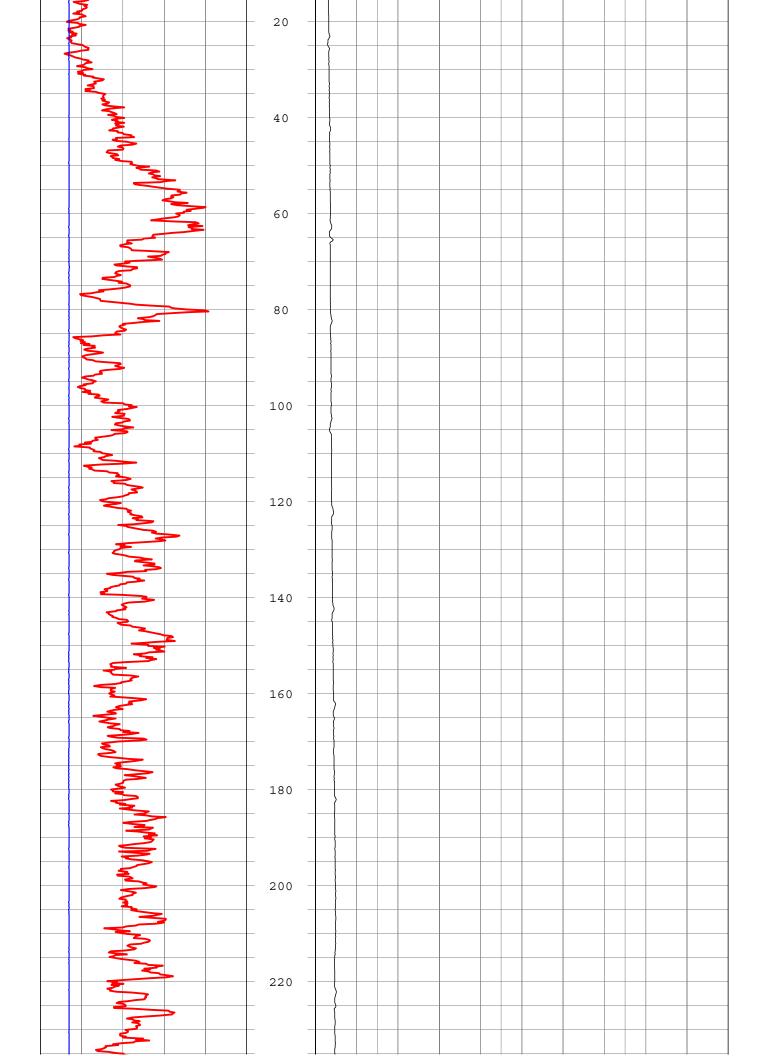
n

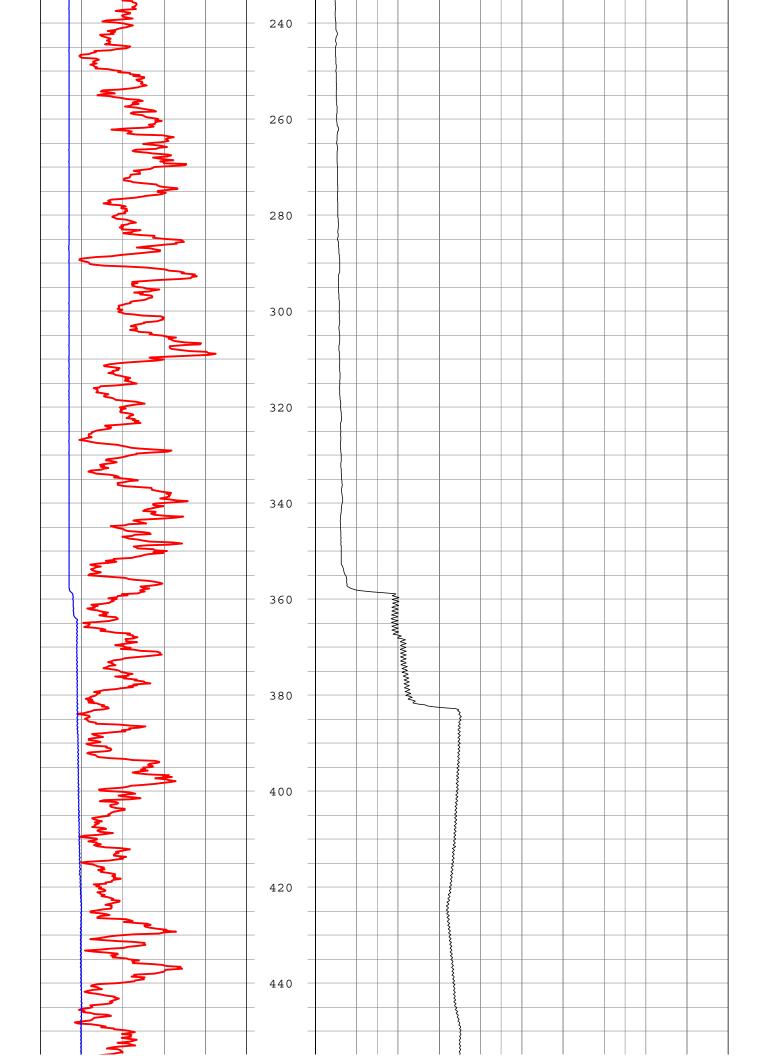
Adopted January 23, 2003

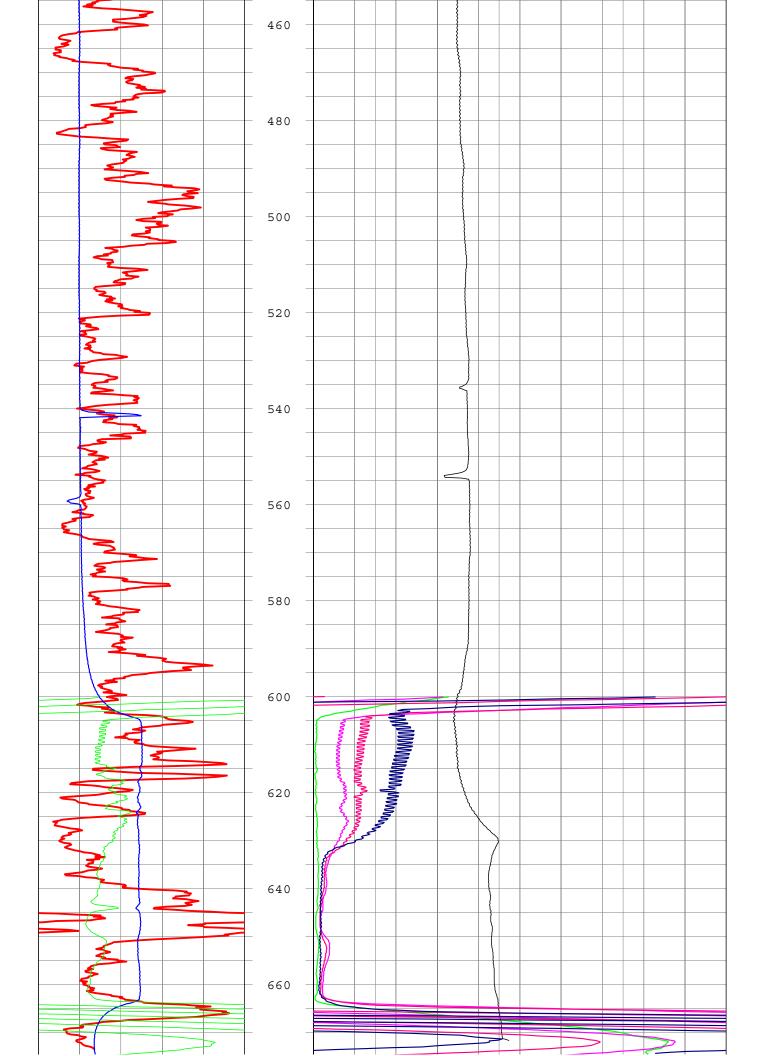
Effective February 13, 2003

<u>Appendix B</u>

Geophysical Logs



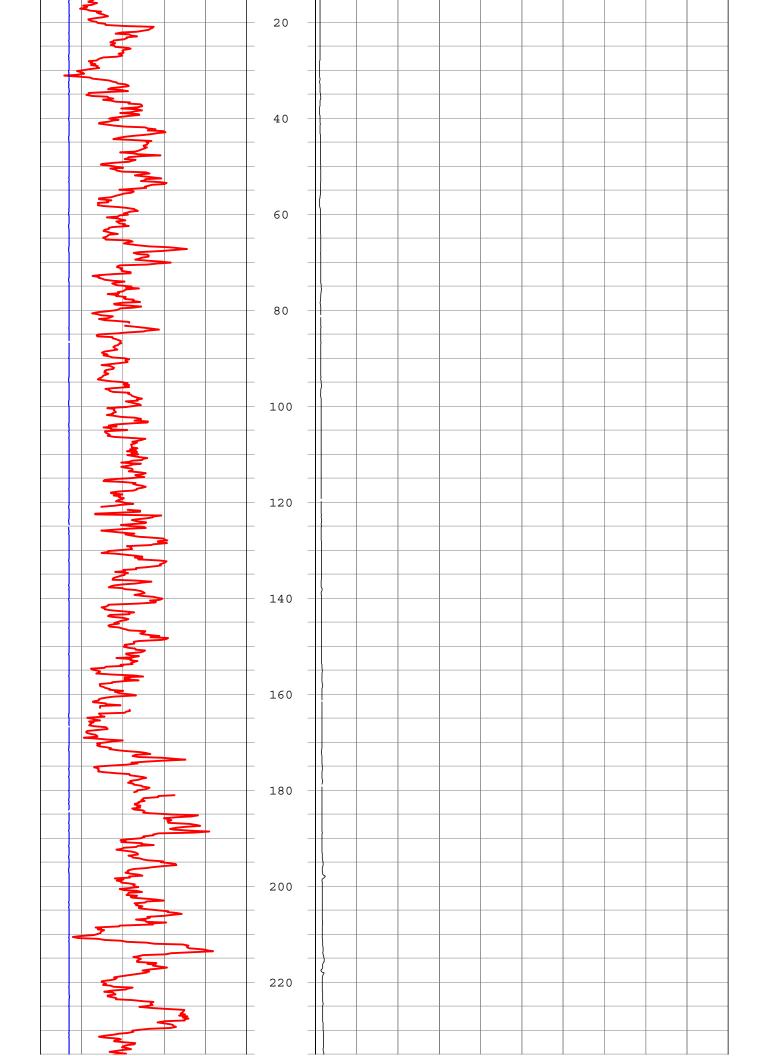

Geophysical Log

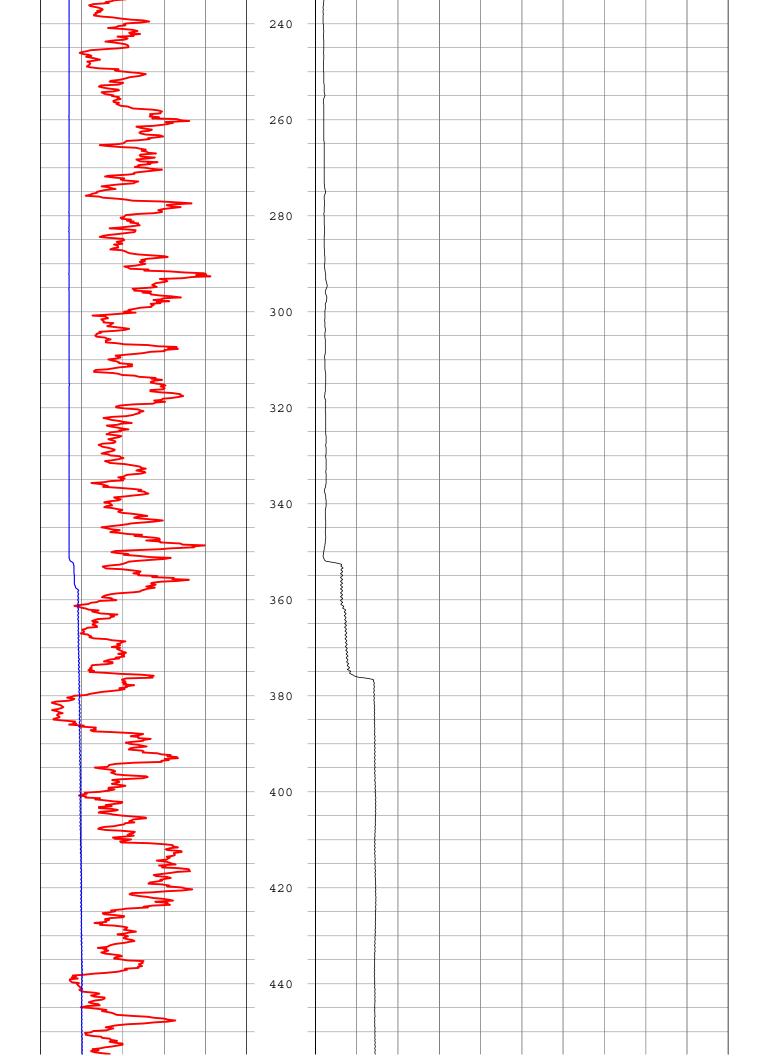

Well No. 2

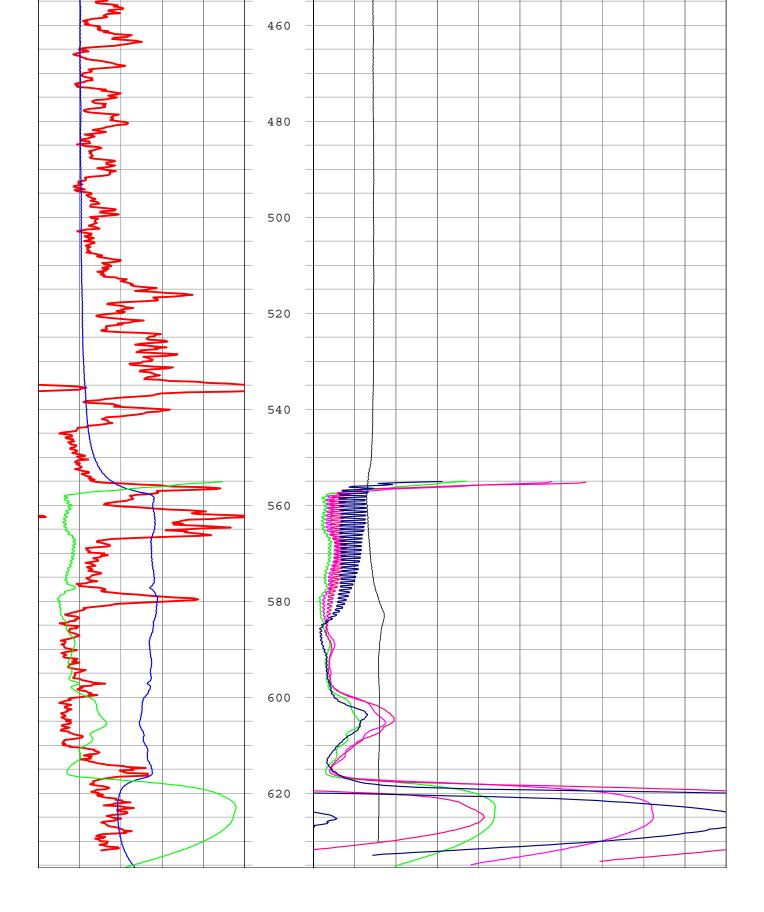
Blanco-Pedernales Groundwater Conservation District Borehole Name or #: Majestic Hills Phase 2 Well #2 Logs: GR RES Logging Dates: 9/17/2019 601 West Main, P. O. Box 1516, Johnson City, TX 78636 - - - (830) 868-9196 - - - manager@blancocountygroundwater.org Well Owner: LSLP Majestic Hills Ranch LLP Well Regist. #: 20190085 Latitude: 30* 03' 06.1" Blanco County, Texas Longitude: 98* 29' 12.0" GPS: Elevation MSL: Topo: 1820 Google Earth: GPS Datum: **NAD 27** Borehole Data Drilling Contractor: Apex Drilling Date Drilled: 9/10/2019 Measuring Point: 2.5 Feet Above Ground Level Driller TD: 685 Depth Reference: Ground Level Logger TD: 678 Water Level: 359.2 **Feet Below Measuring Point** Bit Record Casing Record Run Bit Size From То PVC / Steel Size From То 1 8 0 50 PVC 4.5 +2.5 685 2 6025 50 685 3 Logging Data Logged By: R. Fieseler Witness: None Log Type Run # Up / Down From То Feet / Min. GR RES 1 UP 678 0 15 2 15 3 4 Correlated with Twin Sisters Hall well and 57614JS (James Steel well) Comments:

	Gamma		Depth	1			S	Р			
0	cps Current	100	1ft:240ft	0			m R				2000
-5	mA SPR	20		0			Ohn R′	n-m I6			5000
0	Ohm	500		0			Ohn R3	n-m 32			5000
				0		1	Ohn Ré	n-m 64			5000
				0			Ohn	n-m			5000
¥v.			- 0 - 								

Blanco-Pedernales Groundwater **Conservation District**

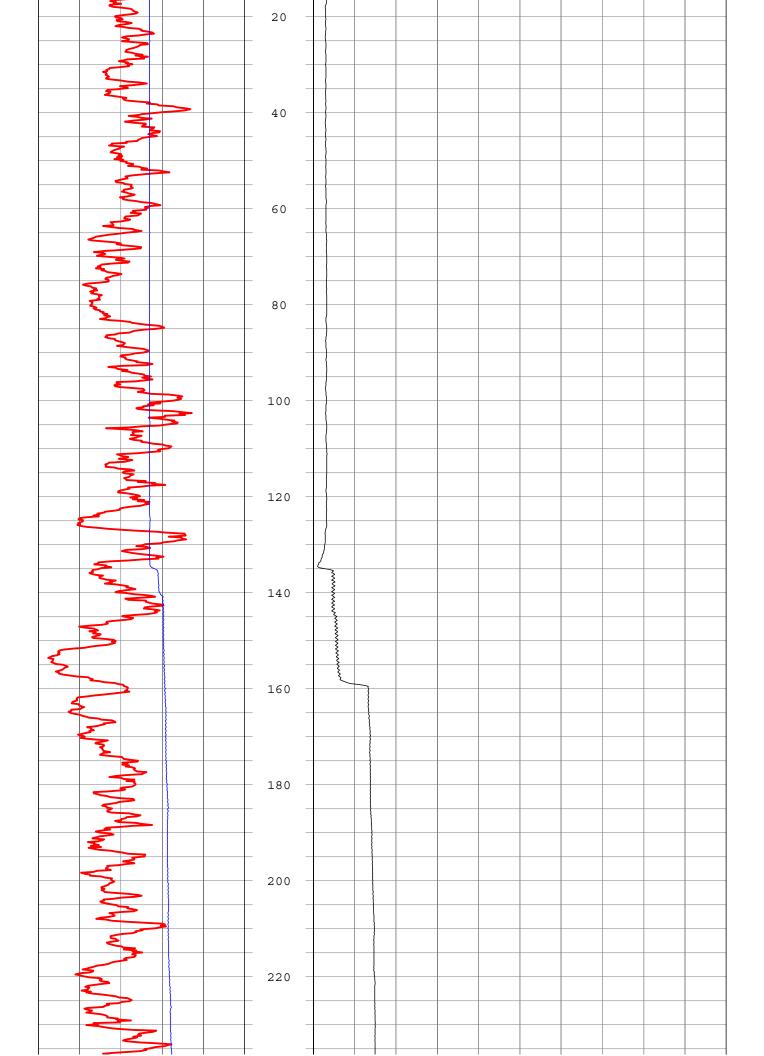

Borehole Name or #: Majestic Hills Phase 2 Well #4 Logs: GR RES

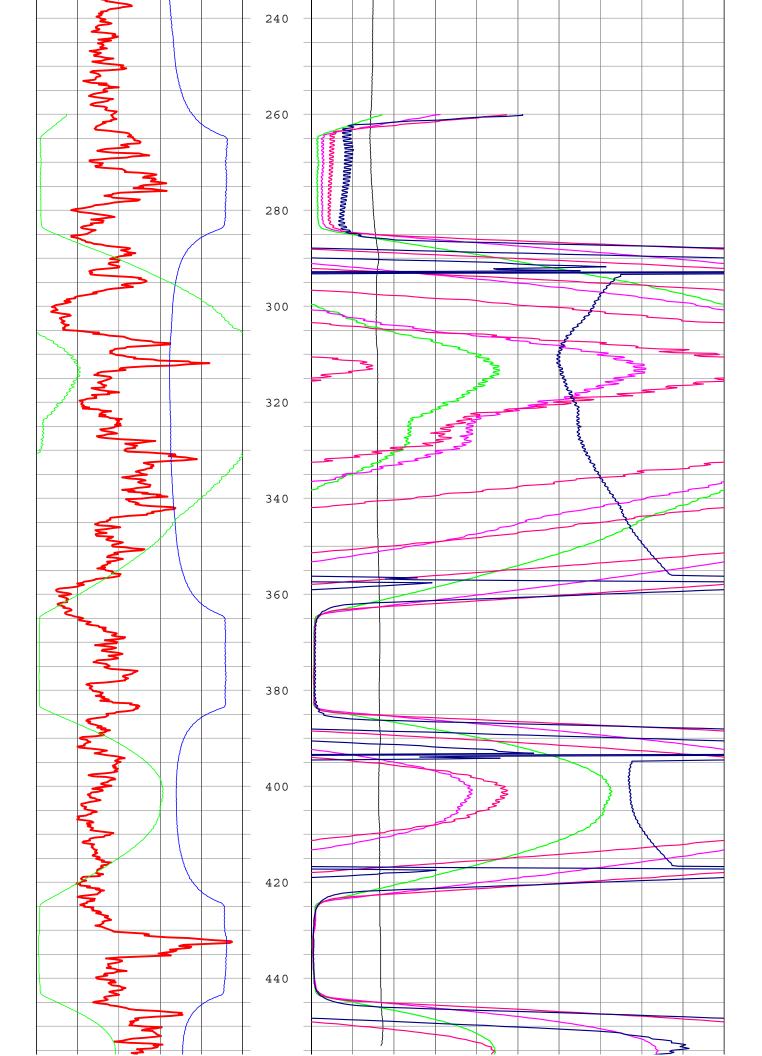

Logging Dates: 9/16/2019



	LSLP Majest	ic Hills Ranch L	LP		Well Regist. #:	20190087	
Latitude: 30	* 03' 05.1"	Longitude:	98* 29' 45.3"		Blanco County	, Texas	
Elevation M	SL: Topo: 174	5 GPS:	Google I		GPS Datum:	Ν	IAD 27
Drilling Co	ntractor: Apex	Drilling	Boreho	le Data	Date Drilled: 9	/16/2019	
Measuring	Point: 2.7	Feet Above	Ground Level		Driller TD: 68	5	
Depth Refe	erence: 354.8	Ground Leve	el		Logger TD: 6	36.5	
Water Leve	el: 354.8	Feet Below	Measuring Point				
	Bit	Record			Casing R	ecord	
Run	Bit Size	From	То	PVC / Steel	Size	From	То
1	8	0	50	PVC	4.5	+2.7	636
2	6.25	50	640				
3							
			Loggin	a Data			
Logged By	R. Fieseler		33	Witness: Nor	ne		
Log	Туре	Run #	Up / Down	From	То	F	eet / Min.
GR	RES	1	UP	636	0		15
		2					15
		3					
		4					
Comment	's:	4					
	i s: Gamma	4			SP		
					SP mV R8		5
	Gamma	Depth	<u> </u>		mV		
	Gamma cps Current mA	Depth 100 1ft:240	ft 0		mV R8 Ohm-m		51

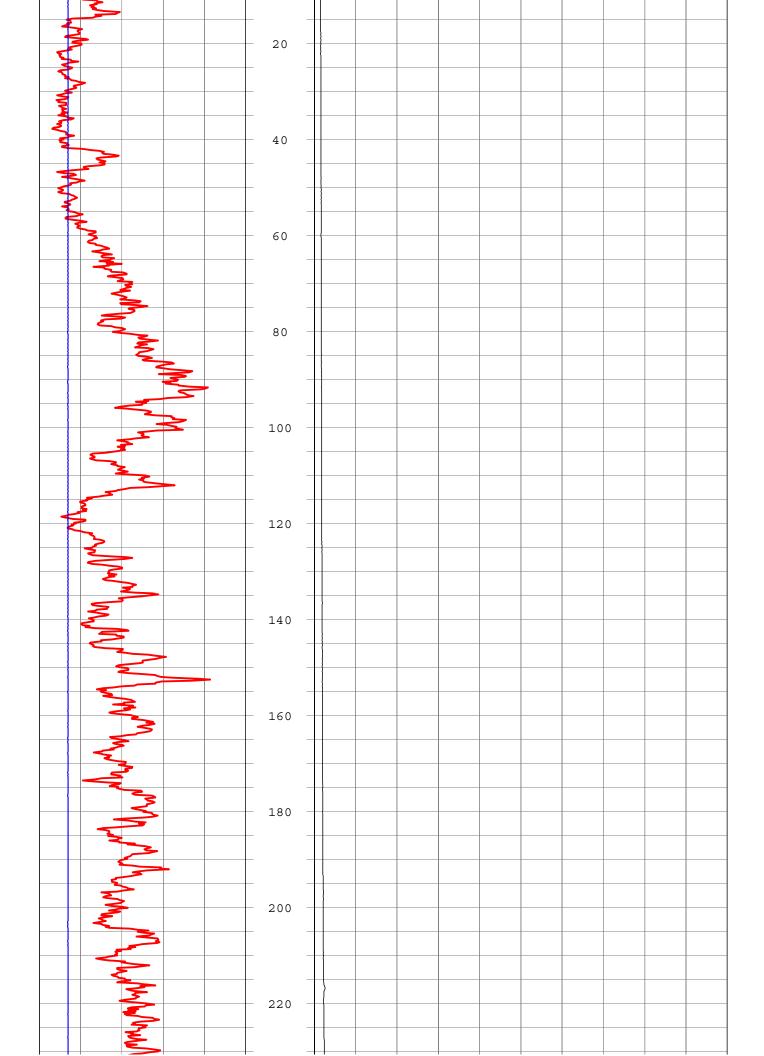
5000 Ohm-m 0 0

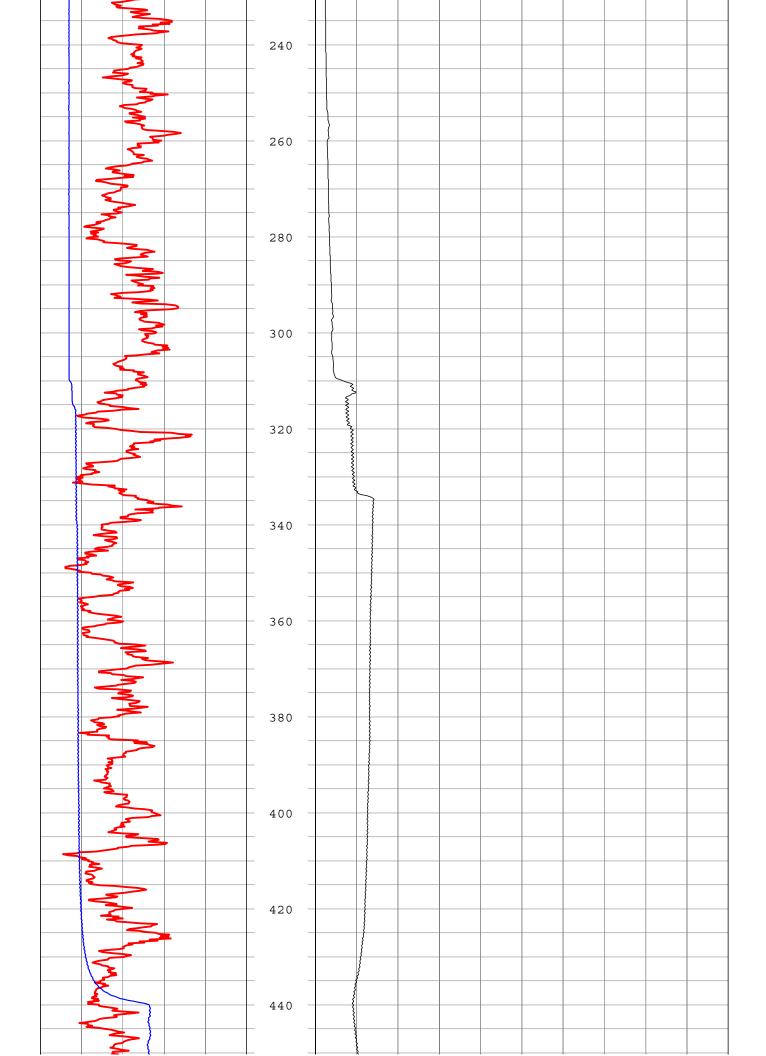


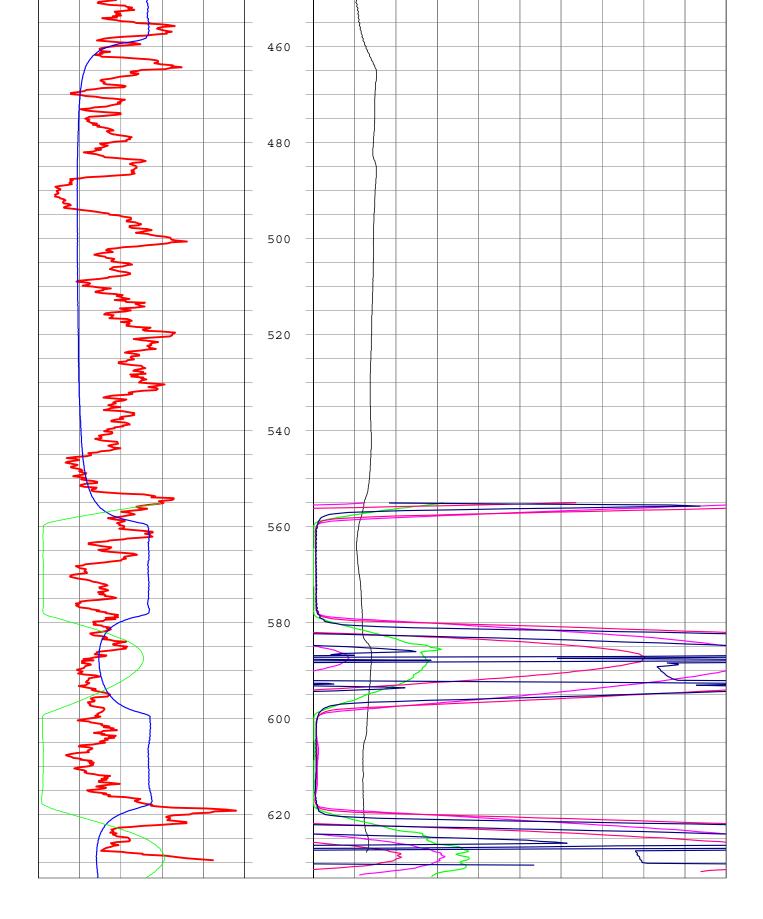


Blanco-Pedernales Groundwater Conservation District Borehole Name or #: Majestic Hills Phase 2 Well #6 Logs: GR RES Logging Dates: 9/18/2019 601 West Main, P. O. Box 1516, Johnson City, TX 78636 - - - (830) 868-9196 - - - manager@blancocountygroundwater.org Well Owner: LSLP Majestic Hills Ranch LLP Well Regist. #: 20190089 Latitude: 30* 02' 44.6" Blanco County, Texas Longitude: 98* 29' 54.9" GPS: Elevation MSL: Topo: 1655 Google Earth: GPS Datum: **NAD 27** Borehole Data Drilling Contractor: Apex Drilling Date Drilled: 9/6/2019 Feet Above Ground Level Measuring Point: 1.5 Driller TD: 460 Depth Reference: Ground Level Logger TD: 460 Water Level: 136.2 **Feet Below Measuring Point** Bit Record Casing Record Run Bit Size From То PVC / Steel Size From То 1 8 0 50 PVC 4.5 1.5 460 2 50 465 6.25 3 Logging Data Logged By: R. Fieseler Witness: None Log Type Run # Up / Down From То Feet / Min. GR RES 1 UP 460 0 15 2 15 3 4 Comments: Gamma SP Depth

		•	L									
cps Current	100	1ft:240ft	0									5000
mA SPR	10		0									10000
Ohm	5000		0									10000
			0					Ohm-m 1000 R64				10000
			0				Oh	m-m				10000
MM Market												
	Current MA SPR Ohm	Current MA 10 SPR Ohm 5000	cps1001ft:240ftCurrentmA10SPR0Ohm5000	cps 100 1ft:240ft 0 Current 0 0 0 MA 10 0 0 SPR 0 0 0 Ohm 5000 0 0 0 0 0 0	cps 100 1ft:240ft 0 Current 0 0 0 MA 10 0 0 Ohm 5000 0 0 0 0 0 0	cps 100 1ft:240ft 0 MA 10 0 0 SPR 0 0 0 Ohm 5000 0 0	cps 100 1ft:240ft 0 MA 10 0 SPR 0 Ohm 5000 0 0 0	cps 100 1ft:240ft 0 nr mA 10 0 Ohn SPR 0 Ohn Ohm 5000 0 Ohn R 0 Ohn 0 Ohn R 0 Ohn Ohn	cps 100 1ft:240ft 0 mV Current 0 0hm-m mA 10 0 0hm-m SPR 0 0hm-m Ohm 5000 0 0hm-m R32 0 0hm-m R64 0 0hm-m	cps 100 1ft:240ft 0 mV Current R8 mA 10 0 Ohm-m SPR 0 Ohm-m Ohm 5000 0 Ohm-m R32 0 Ohm-m R64 0 Ohm-m	cps 100 1ft:240ft 0 mV MA 10 0 Ohm-m SPR 0 Ohm-m Ohm 5000 0 Ohm 5000 0 Ohm 64 O Ohm-m R64 0	cps 100 1ft:240ft 0 mV MA 10 0 Ohm-m SPR 0 Ohm-m Ohm 5000 0 Ohm 5000 0 Ohm 64 O Ohm-m R64 0

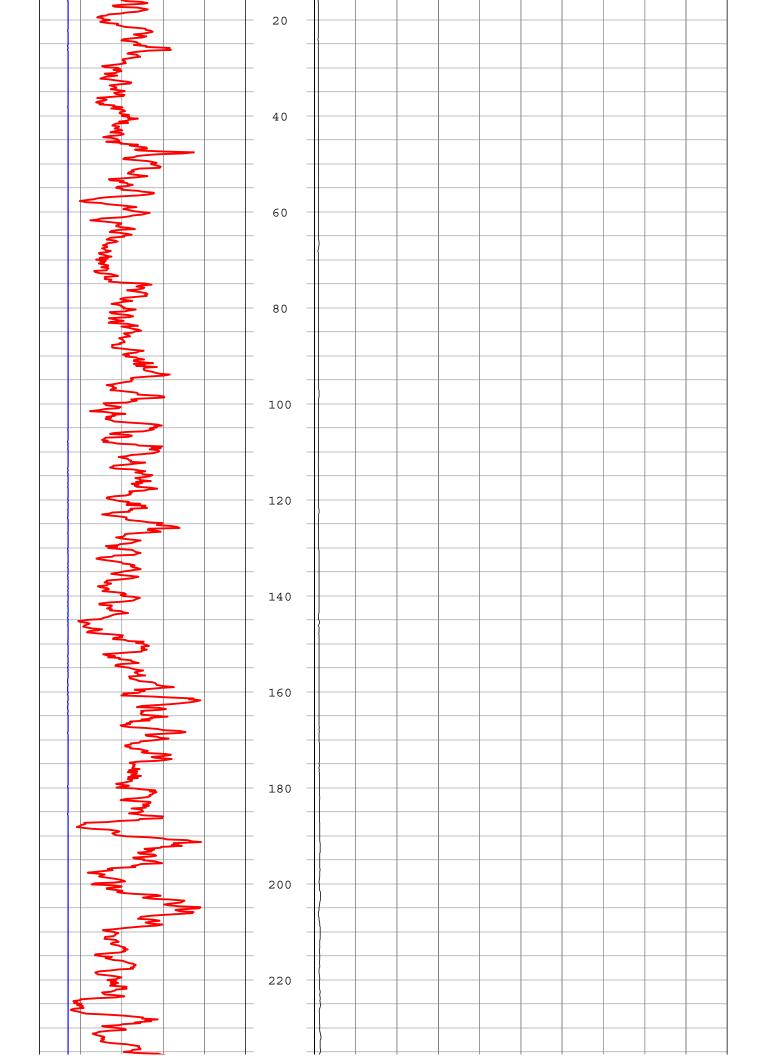


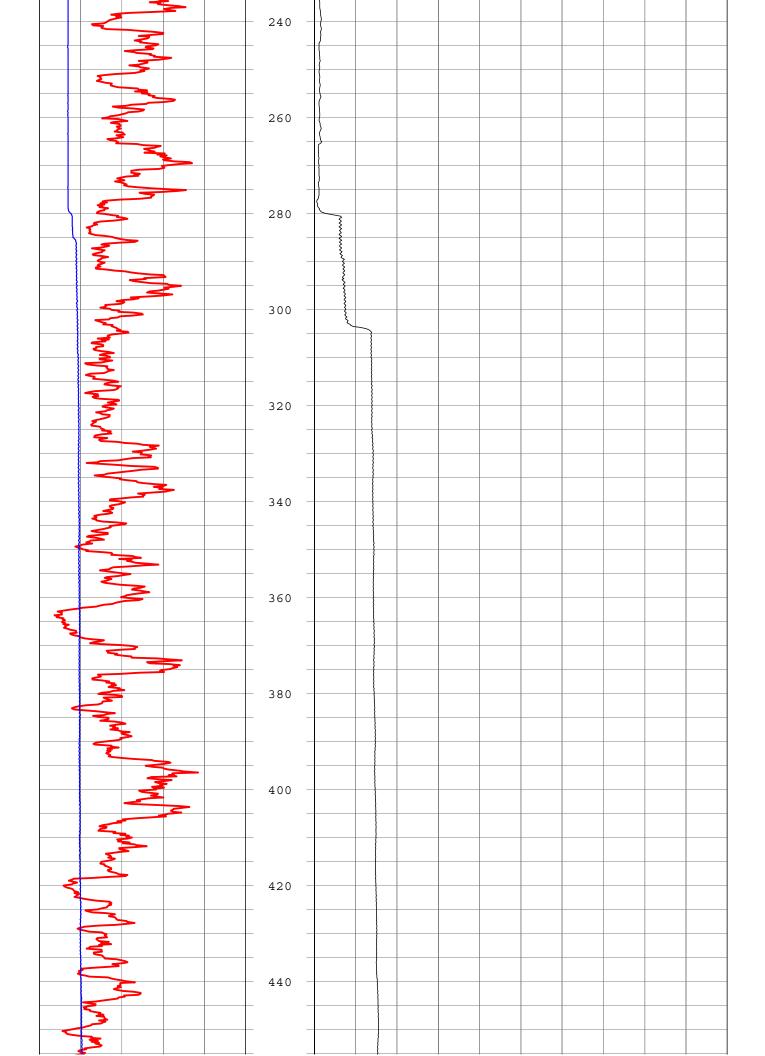


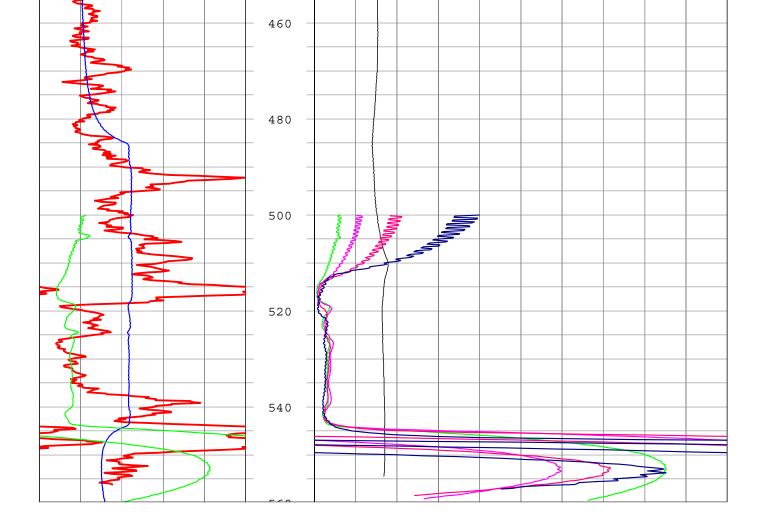

		{							

Blanco-Pedernales Groundwater Conservation District Borehole Name or #: Majestic Hills Phase 2 Well #7 Logs: GR RES Logging Dates: 9/19/2019 601 West Main, P. O. Box 1516, Johnson City, TX 78636 - - - (830) 868-9196 - - - manager@blancocountygroundwater.org Well Owner: LSLP Majestic Hills Ranch LLP Well Regist. #: 20190090 Latitude: 30* 02' 10.7" Blanco County, Texas Longitude: 98* 30' 24.4" GPS: Elevation MSL: Topo: 1843 Google Earth: GPS Datum: **NAD 27** Borehole Data Drilling Contractor: Apex Drilling Date Drilled: 9/18/2019 Measuring Point: 2.3 Feet Above Ground Level Driller TD: 640 Depth Reference: Ground Level Logger TD: 634 Water Level: 311.8 **Feet Below Measuring Point** Bit Record Casing Record Run Bit Size From То PVC / Steel Size From То 1 8 0 50 PVC 4.5 2.3 TD 2 50 640 6.25 3 Logging Data Logged By: R. Fieseler Witness: None Log Type Run # Up / Down From То Feet / Min. GR RES 1 UP 634 0 15 2 15 3 4 Comments: SP Gamma Depth 1ft:240ft 100 0 0 mV 5000 cps Current R8 -5 mΑ 20 0 Ohm-m 10000 SPR R16

0 Ohm 5000 0 Ohm-m 10000 R32 0 Ohm-m 10000 R64 0 Ohm-m 10000 R64







Blanco-Pedernales Groundwater **Conservation District** Borehole Name or #: Majestic Hills Phase 2 Well #9 Logs: GR RES Logging Dates: 9/16/2019 601 West Main, P. O. Box 1516, Johnson City, TX 78636 - - - (830) 868-9196 - - - manager@blancocountygroundwater.org Well Owner: LSLP Majestic Hills Ranch LLP Well Regist. #: 20190092 Latitude: 30* 03' 26.4" Longitude: 98* 29' 38.0" Blanco County, Texas GPS: Elevation MSL: Topo: 1720 Google Earth: GPS Datum: **NAD 27** Borehole Data Drilling Contractor: Apex Drilling Date Drilled: 9/14/2019 Measuring Point: 2.0 Driller TD: 560 Feet Above Ground Level Depth Reference: Ground Level Logger TD: 560 Water Level: 282.5 **Feet Below Measuring Point** Bit Record Casing Record Run Bit Size From То PVC / Steel Size From То 1 8 0 50 PVC 4.5 +2 560 2 50 6.25 560 3 Logging Data Logged By: R. Fieseler Witness: None Log Type Run # Up / Down From То Feet / Min. GR RES 1 UP 560 0 15 2 15 3 4 Comments: SP Gamma Depth 1ft:240ft 100 0 0 mV 5000 cps Current R8 20 0

-5 mΑ Ohm-m 5000 SPR R16 0 Ohm 1000 0 5000 Ohm-m R32 0 Ohm-m 5000 R64 5000 Ohm-m 0 ()

Appendix C

State Well Reports

Mar	Box 1987				
			Grid #:	57-61-4	
	ble Falls , TX 78654		Latitude:	30° 03' 17" N	
	estic Hill Subdivisio nco, TX	n Phase II	Longitude:	098° 29' 14" W	
Well County: Blar	nco		Elevation:	No Data	
Number of Wells Drill				No Data	
Type of Work: New	Well		Proposed Use	e: Domestic	
			Filipuseu Usa		
prilling Start Date: 9/	12/2019 Drilling	End Date: 9/13/2	2019		
~	Diameter (in.,) То	p Depth (ft.)	Bottom Depth (ft.)	
Borehole:	8		0	50	
	6.25		50	705	
Drilling Method:	Air Rotary				
Borehole Completion:	Straight Wall				
	Top Depth (ft.)	Bottom Depth (ft.)	Desc	cription (number of sacks & material)	
Annular Seal Data:	0	50	3 Bens	seal 3 Portland 6 Bags/Sacks	
Seal Method: S	Slurry		Distance to Prop	perty Line (ft.): 50	
Sealed By: D)riller		istance to Septic	Field or other amination (ft.): 100	
				eptic Tank (ft.): 50	
			Method	of Verification: Land Owner	
Surface Completion:	Surface Sleeve Ir	nstalled	Sur	face Completion by Driller	
Water Level:	No Data				
Packers:	Burlap/Neoprene Burlap/Neoprene Burlap/Neoprene	e at 55 ft.			
	Burlap/Neoprene	e at 420 ft.			
Type of Pump:	Burlap/Neoprene No Data	e at 420 ft.			

	Strata Depth (ft.)	Water Type		
Water Quality:	423 - 700	M. Trinity		
		Chemical Ana	lysis Made: No	
	Did the driller	knowingly penetrate any s contained injurious co		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this we ision) and that each and al inderstood that failure to co aturned for completion and	I of the statements omplete the required	herein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and al inderstood that failure to co eturned for completion and	I of the statements omplete the required	herein are true and
	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and al inderstood that failure to co eturned for completion and	I of the statements omplete the required	herein are true and
	driller's direct superv correct. The driller u the report(s) being re Apex Drilling, Inc. P.O. Box 867	ision) and that each and al inderstood that failure to co eturned for completion and 78654	I of the statements omplete the required	herein are true and I items will result in

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	51	Tan LS
51	59	Gray Tan LS
59	115	Tan LS
115	157	Gray Tan LS
157	165	Tan LS
165	423	Gray Tan LS
423	425	Tan LS
425	617	Tan Gray LS
617	627	Tan LS
627	700	Tan Gray LS
700	705	Gray LS

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	620
4.5	Screen	New Plastic (PVC)	.035	620	680
4.5	Blank	New Plastic (PVC)	SDR17	680	705

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

Owner:	LSLP	Majestic Hills LLC	2	Owner Well	#: 2	
Address:		ox 1987		Grid #:	57-61-4	
Address.		e Falls , TX 78654	ŧ	Latitude:	30° 03' 07" N	
Well Location:	Majes Blanc	tic Hill Subdivisio	on Phase II			
	Blanc			Longitude:	098° 29' 18" W	
Well County: Number of Well				Elevation:	No Data	
	13 Dillet	u. IU				
Type of Work:	New W	/ell		Proposed Us	se: Domestic	
Borehole:		Diameter (in. 8 6.25		op Depth (ft.) 0 50	Bottom Depth (ft.) 50 685	
Borehole:		8		0	50	
Drilling Method:		۰.2۵ Air Rotary				
Borehole Compl	letion:	Straight Wall				
Borehole Completion:		Top Depth (ft.) Bottom D				
			Bottom Depth (ft		cription (number of sacks & material)	
Annular Seal Da	ata:	Top Depth (ft.) 0	Bottom Depth (fi		ccription (number of sacks & material) seal / 3 Portland 6 Bags/Sacks	
Seal Meth	nod: Slu	O	50	3 Ben Distance to Pro	seal / 3 Portland 6 Bags/Sacks	
Seal Meth		O	50	3 Ben Distance to Pro Distance to Septi	seal / 3 Portland 6 Bags/Sacks	
Seal Meth	nod: Slu	O	50	3 Ben Distance to Pro Distance to Seption concentrated correct	seal / 3 Portland 6 Bags/Sacks operty Line (ft.): 50 c Field or other	
Seal Meth	nod: Slu	O	50	3 Ben Distance to Pro Distance to Seption concentrated corr Distance to S	seal / 3 Portland 6 Bags/Sacks operty Line (ft.): 50 c Field or other atamination (ft.): 100	
Seal Meth Sealed	nod: Slu By: Dri	O	50	3 Ben Distance to Pro Distance to Seption Concentrated con Distance to S Method	seal / 3 Portland 6 Bags/Sacks operty Line (ft.): 50 c Field or other atamination (ft.): 100 Septic Tank (ft.): 50	
Seal Meth Sealed	nod: Slu By: Dri	0 Irry Iler	50	3 Ben Distance to Pro Distance to Seption Concentrated con Distance to S Method	seal / 3 Portland 6 Bags/Sacks operty Line (ft.): 50 c Field or other atamination (ft.): 100 Septic Tank (ft.): 50 d of Verification: Land Owner	
Sealed Surface Comple	nod: Slu By: Dri	0 Irry Iler Surface Sleeve II	50 Installed e at 50 ft. e at 55 ft. e at 395 ft.	3 Ben Distance to Pro Distance to Seption Concentrated con Distance to S Method	seal / 3 Portland 6 Bags/Sacks operty Line (ft.): 50 c Field or other atamination (ft.): 100 Septic Tank (ft.): 50 d of Verification: Land Owner	
Seal Meth Sealed Surface Comple Water Level:	nod: Slu By: Dri	0 Irry Iler Surface Sleeve In No Data Burlap/Neopren Burlap/Neopren Burlap/Neopren	50 Installed e at 50 ft. e at 55 ft. e at 395 ft.	3 Ben Distance to Pro Distance to Seption Concentrated con Distance to S Method	seal / 3 Portland 6 Bags/Sacks operty Line (ft.): 50 c Field or other atamination (ft.): 100 Septic Tank (ft.): 50 d of Verification: Land Owner	

	Strata Depth (ft.)	Water Type		
Water Quality:	400 - 665	M. Trinity		
		Chemical Ana	lysis Made: No	
	Did the driller k	knowingly penetrate any st contained injurious cor		
Certification Data:	driller's direct supervis correct. The driller ur	at the driller drilled this we sion) and that each and al nderstood that failure to co turned for completion and	l of the statements h mplete the required	nerein are true and
Certification Data: Company Information	driller's direct supervis correct. The driller ur the report(s) being ref	sion) and that each and al nderstood that failure to co	l of the statements h mplete the required	nerein are true and
	driller's direct supervis correct. The driller ur the report(s) being ref	sion) and that each and al nderstood that failure to co turned for completion and	l of the statements h mplete the required	nerein are true and
	driller's direct supervis correct. The driller ur the report(s) being ref Apex Drilling, Inc. P.O. Box 867	sion) and that each and al nderstood that failure to co turned for completion and 8654	l of the statements h mplete the required	nerein are true and items will result in

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	35	Tan LS
35	45	Gray Tan LS
45	117	Tan LS
117	360	Gray Tan LS
360	638	Tan Gray LS
638	642	Tan LS
642	665	Gray LS
665	685	Gray LS w/ Clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	605
4.5	Screen	New Plastic (PVC)	.035	605	685

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

				PORT for Tra	
Owner:	LSLP	Majestic Hills LLO	C	Owner Well #:	3
Address:		ox 1987 e Falls, TX 78654		Grid #:	57-61-4
Well Location:		tic Hill Subdivisio		Latitude:	30° 02' 58" N
	Blanc			Longitude:	098° 29' 17" W
Well County: Blanc		D		Elevation:	No Data
Number of Wel	ls Drilleo	d: 10			
Type of Work:	New W	/ell		Proposed Use	e: Domestic
Drilling Start Da	te: 9/11	/2019 Drilling Diameter (in.	g End Date: 9/12/	2019 op Depth (ft.)	Bottom Depth (ft.)
Borehole:		<i>Diameter</i> (m. 8	.) 10	0	50
		6.25		50	665
Drilling Method:		Air Rotary			
Borehole Compl	letion:	Straight Wall			
		Top Depth (ft.) Bottom De		n (ft.) Description (number of sacks & material)	
Annular Seal Da	ata:	0	50	3 Bens	eal 3 Portland 6 Bags/Sacks
Seal Meth	hod: Slu	irry		Distance to Prop	perty Line (ft.): 50
Seal Meth	hod: Slu By: Dri	-		istance to Septic	perty Line (ft.): 50
Seal Meth		-		Distance to Septic concentrated conta	perty Line (ft.): 50 Field or other
Seal Meth		-		Distance to Septic concentrated conta Distance to Se	perty Line (ft.): 50 Field or other amination (ft.): 100
Seal Meth Sealed	By: Dri	-	C	Distance to Septic concentrated conta Distance to Se Method o	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50
Seal Meth Sealed	By: Dri	ller	C	Distance to Septic concentrated conta Distance to Se Method o	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner
Seal Meth Sealed Surface Comple	By: Dri	ller Surface Sleeve II	nstalled e at 50 ft. e at 55 ft. e at 395 ft.	Distance to Septic concentrated conta Distance to Se Method o	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner
Seal Meth Sealed Surface Comple Water Level:	By: Dri	ller Surface Sleeve In No Data Burlap/Neopren Burlap/Neopren Burlap/Neopren	nstalled e at 50 ft. e at 55 ft. e at 395 ft.	Distance to Septic concentrated conta Distance to Se Method o	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner

	Strata Depth (ft.)	Water Type		
Water Quality:	400 - 660	M. Trinity		
		Chemical Ana	alysis Made: No	
	Did the driller	knowingly penetrate any s contained injurious co		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this we rision) and that each and a understood that failure to co eturned for completion and	Il of the statements omplete the require	s herein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and a inderstood that failure to co eturned for completion and	Il of the statements omplete the require	s herein are true and
	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and a inderstood that failure to co eturned for completion and	Il of the statements omplete the require	s herein are true and
	driller's direct superv correct. The driller u the report(s) being re Apex Drilling, Inc. P.O. Box 867	rision) and that each and a inderstood that failure to co eturned for completion and 78654	Il of the statements omplete the require	s herein are true and ed items will result in

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	27	Tan LS
27	57	Gray Tan LS
57	67	Tan LS
67	280	Gray Tan LS
280	400	Tan Gray LS
400	423	Tan LS
423	428	Gray Tan LS
428	515	Tan Gray LS
515	525	Tan LS
525	635	Tan Gray LS
635	645	Tan LS
645	660	Gray LS
660	665	Gray Clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	505
4.5	Screen	New Plastic (PVC)	.035	505	525
4.5	Blank	New Plastic (PVC)	SDR17	525	585
4.5	Screen	New Plastic (PVC)	.035	585	605
4.5	Blank	New Plastic (PVC)	SDR17	605	625
4.5	Screen	New Plastic (PVC)	.035	625	645
4.5	Blank	New Plastic (PVC)	SDR17	645	665

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

Owner:	LSLP Majestic Hills LL	С	Owner Well #:	4
	- Р О Вох 1987		Grid #:	57-61-4
	Marble Falls , TX 7865	4	Latitude:	30° 03' 06" N
	Majestic Hill Subdivisi Blanco, TX	on Phase II	Longitude:	098° 29' 46" W
	Vell County: Blanco		Elevation:	No Data
Number of Wells				NO Data
	Na 18/a 11		Dran a cod Lla co	Domostia
Type of Work:	New Well		Proposed Use:	Domestic
orehole:	Diameter (ir 8	n.) Toj	o Depth (ft.)	Bottom Depth (ft.) 50
	6.25		50	640
Drilling Method:	Air Rotary			
Borehole Complet	tion: Straight Wall			
•	ion. Otraight Han			
·	Top Depth (ft.)	Bottom Depth (ft.)	Descriț	ption (number of sacks & material)
	Top Depth (ft.)	Bottom Depth (ft.) 50		otion (number of sacks & material) eal/3 Portland 6 Bags/Sacks
	Top Depth (ft.)			al/3 Portland 6 Bags/Sacks
Annular Seal Data Seal Metho	Top Depth (ft.)	50	3 Bense Distance to Prope stance to Septic F	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50
Annular Seal Data Seal Metho	Top Depth (ft.) a: 0 od: Slurry	50	3 Bense Distance to Prope stance to Septic F oncentrated contain	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50 Field or other
Annular Seal Data Seal Metho	Top Depth (ft.) a: 0 od: Slurry	50	3 Bense Distance to Prope stance to Septic F oncentrated contain Distance to Sep	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50 Field or other mination (ft.): 100
Annular Seal Data Seal Metho Sealed B	Top Depth (ft.) a: 0 od: Slurry By: Driller	50 D c	3 Bense Distance to Prope istance to Septic F oncentrated contain Distance to Sep Method or	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50 Field or other mination (ft.): 100 otic Tank (ft.): 50
Annular Seal Data Seal Metho Sealed B	Top Depth (ft.) a: 0 od: Slurry By: Driller	50 D c	3 Bense Distance to Prope istance to Septic F oncentrated contain Distance to Sep Method or	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50 Field or other mination (ft.): 100 otic Tank (ft.): 50 f Verification: Land Owner
Annular Seal Data Seal Metho Sealed B Surface Completio	Top Depth (ft.) a: 0 od: Slurry By: Driller on: Surface Sleeve	50 D c Installed ne at 50 ft. ne at 55 ft. ne at 325 ft.	3 Bense Distance to Prope istance to Septic F oncentrated contain Distance to Sep Method or	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50 Field or other mination (ft.): 100 otic Tank (ft.): 50 f Verification: Land Owner
Annular Seal Data Seal Metho Sealed B Surface Completio	Top Depth (ft.) a: 0 od: Slurry By: Driller on: Surface Sleeve No Data Burlap/Neoprer Burlap/Neoprer Burlap/Neoprer Burlap/Neoprer	50 D c Installed ne at 50 ft. ne at 55 ft. ne at 325 ft.	3 Bense Distance to Prope istance to Septic F oncentrated contain Distance to Sep Method or	eal/3 Portland 6 Bags/Sacks erty Line (ft.): 50 Field or other mination (ft.): 100 otic Tank (ft.): 50 f Verification: Land Owner

	Strata Depth (ft.)	Water Type		
Water Quality:	330 - 620	M. Trinity		
		Chemical Ana	lysis Made: No	
	Did the driller k	knowingly penetrate any s contained injurious co		
Certification Data:	driller's direct supervis correct. The driller un	at the driller drilled this we sion) and that each and al nderstood that failure to cc turned for completion and	l of the statements mplete the require	herein are true and
Certification Data: Company Information:	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and al nderstood that failure to co	l of the statements mplete the require	herein are true and
	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and al nderstood that failure to co turned for completion and	l of the statements mplete the require	herein are true and
	driller's direct supervis correct. The driller un the report(s) being ret Apex Drilling, Inc. P.O. Box 867	sion) and that each and al nderstood that failure to co turned for completion and 8654	l of the statements mplete the require	herein are true and d items will result in

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	21	Tan LS
21	350	Gray Tan LS
350	475	Tan Gray LS
475	486	Tan LS
486	540	Tan Gray LS
540	591	Tan LS
591	620	Tan LS
620	640	Gray LS

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	560
4.5	Screen	New Plastic (PVC)	.035	560	620
4.5	Blank	New Plastic (PVC)	SDR17	620	640

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Owner:	LSLP Majestic H	ills LLC	Owner Well #:	5
Address:	P O Box 1987		Grid #:	57-61-4
	Marble Falls , TX		Latitude:	30° 02' 56" N
Well Location:Majestic Hill Subdivision Phase II 5 Blanco, TXWell County:Blanco		Longitude:	098° 29' 54" W	
		Elevation:	No Data	
Number of Wells	Drilled: 10			
Type of Work:	New Well		Proposed Use:	Domestic
orehole:		8 25	Top Depth (ft.) 0 50	Bottom Depth (ft.) 50 500
Borehole:				
		6.25	50	500
Drilling Method:	Air Rotary	-		
Borehole Comple	tion: Straight V	vali		
Annular Seal Dat	Top Depti			tion (number of sacks & material)
	•	50		al 3 Portland 6 Bags/Sacks
Seal Methe	-		Distance to Prope Distance to Septic F	
Sealed I	3V: Driller			
Sealed I	By: Driller		concentrated contar	
Sealed I	sy: Driller		concentrated contar Distance to Sep	tic Tank (ft.): 50
			concentrated contar Distance to Sep Method of	tic Tank (ft.): 50 Verification: Land Owner
		leeve Installed	concentrated contar Distance to Sep Method of	tic Tank (ft.): 50
Surface Completi		leeve Installed	concentrated contar Distance to Sep Method of	tic Tank (ft.): 50 Verification: Land Owner
Sealed I Surface Completi Water Level: Packers:	on: Surface S No Data Burlap/No Burlap/No Burlap/No	eoprene at 50 ft. eoprene at 55 ft. eoprene at 220 ft. eoprene at 240 ft.	concentrated contar Distance to Sep Method of	tic Tank (ft.): 50 Verification: Land Owner
Surface Completi Water Level:	on: Surface S No Data Burlap/No Burlap/No Burlap/No	eoprene at 50 ft. eoprene at 55 ft. eoprene at 220 ft.	concentrated contar Distance to Sep Method of	tic Tank (ft.): 50 Verification: Land Owner

	Strata Depth (ft.)	Water Type		
Water Quality:	240 - 480	M. Trinity		
		Chemical Ana	lysis Made: No	
	Did the driller	knowingly penetrate any s contained injurious co		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this we sion) and that each and al nderstood that failure to cc turned for completion and	I of the statements mplete the required	herein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller u the report(s) being re	sion) and that each and al nderstood that failure to co	I of the statements mplete the required	herein are true and
	driller's direct supervi correct. The driller u the report(s) being re	sion) and that each and al nderstood that failure to co turned for completion and	I of the statements mplete the required	herein are true and
	driller's direct supervi correct. The driller up the report(s) being re Apex Drilling, Inc. P.O. Box 867	sion) and that each and al nderstood that failure to co turned for completion and 78654	I of the statements mplete the required	herein are true and d items will result in

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	20	Tan LS
20	175	Gray Tan LS
175	290	Tan Gray LS
290	320	Tan LS
320	365	Tan Gray LS
365	370	Tan LS
370	420	Tan Gray LS
420	430	Tan LS
430	460	Tan Gray LS
460	480	Tan LS
480	500	Gray Tan LS w/ Clay

					Dettem
Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	300
4.5	Screen	New Plastic (PVC)	.035	300	320
4.5	Blank	New Plastic (PVC)	SDR17	320	420
4.5	Screen	New Plastic (PVC)	.035	420	440
4.5	Blank	New Plastic (PVC)	SDR17	440	460
4.5	Screen	New Plastic (PVC)	.035	460	480
4.5	Blank	New Plastic (PVC)	SDR17	480	500

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Owner:	LSLP	Majestic Hills LLC	>	Owner Well #:	6
Address:		ox 1987		Grid #:	57-61-4
		ble Falls , TX 78654		Latitude:	30° 02' 45" N
Well Location:Majestic Hill Subdivision Phase II Blanco, TXWell County:Blanco		n Phase II	Longitude:	098° 29' 56" W	
			Elevation:	No Data	
Number of Well	s Drilleo	d: 10			
Type of Work:	New W	/ell		Proposed Use:	Domestic
orehole:		Diameter (in. 8) T	op Depth (ft.)	Bottom Depth (ft.) 50
		6.25		50	465
Drilling Method:		Air Rotary			
Borehole Comple	etion:	Straight Wall			
		Top Depth (ft.)	Bottom Depth (ft	t.) Descrip	tion (number of sacks & material)
Annular Seal Da	ta:	0	50	3 Bense	al 3 Portland 6 Bags/Sacks
		ırry		Distance to Prope	erty Line (ft.): 50
Seal Meth	100: SIU	•			
Seal Meth Sealed		•		Distance to Septic F concentrated contar	
		•		concentrated contar	
		•		concentrated contar Distance to Sep	nination (ft.): 100
Sealed	By: Dri	•		concentrated contar Distance to Sep Method of	nination (ft.): 100 tic Tank (ft.): 50
Sealed	By: Dri	ller		concentrated contar Distance to Sep Method of	nination (ft.): 100 tic Tank (ft.): 50 ⁻ Verification: Land Owner
Sealed Surface Complet	By: Dri	ller Surface Sleeve I	nstalled e at 50 ft. e at 55 ft. e at 125 ft.	concentrated contar Distance to Sep Method of	nination (ft.): 100 tic Tank (ft.): 50 ⁻ Verification: Land Owner
Sealed Surface Complet Water Level:	By: Dri	ller Surface Sleeve In No Data Burlap/Neopren Burlap/Neopren Burlap/Neopren	nstalled e at 50 ft. e at 55 ft. e at 125 ft.	concentrated contar Distance to Sep Method of	nination (ft.): 100 tic Tank (ft.): 50 [:] Verification: Land Owner

	Strata Depth (ft.)	Water Type		
Water Quality:	130 - 437	M. Trinity		
		Chemical Ana	lysis Made: No)
	Did the driller I	knowingly penetrate any s contained injurious co		0
Certification Data:	driller's direct supervi correct. The driller un	at the driller drilled this we sion) and that each and al nderstood that failure to co turned for completion and	l of the statement omplete the require	ts herein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and a nderstood that failure to co	l of the statement omplete the require	ts herein are true and
	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and a nderstood that failure to co turned for completion and	l of the statement omplete the require	ts herein are true and
	driller's direct supervi correct. The driller un the report(s) being re Apex Drilling, Inc. P.O. Box 867	sion) and that each and all nderstood that failure to co turned for completion and 8654	l of the statement omplete the require	ts herein are true and ed items will result in

Top (ft.)	Bottom (ft.)	Description	Dla (in.)	
0	1	Top Soil	4.5	в
1	70	Tan LS	4.5	
70	96	Gray Tan LS	4.5	S
96	125	Gray Tan LS w/ Clay	4.5	в
125	263	Tan Gray LS		•
263	269	Tan LS	4.5	S
269	355	Tan Gray LS	4.5	В
355	371	Tan LS	4.5	S
371	437	Tan Gray LS		
437	465	Gray Tan LS w/ Clay	4.5	В

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	260
4.5	Screen	New Plastic (PVC)	.035	260	280
4.5	Blank	New Plastic (PVC)	SDR17	280	360
4.5	Screen	New Plastic (PVC)	.035	360	380
4.5	Blank	New Plastic (PVC)	SDR17	380	420
4.5	Screen	New Plastic (PVC)	.035	420	440
4.5	Blank	New Plastic (PVC)	SDR17	440	460

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WEL	L REPORT for Tra	acking #522260
Owner:	LSLP Majestic Hills LLC	Owner Well #	: 7
Address:	P O Box 1987 Marble Falls , TX 78654	Grid #:	57-60-6
Well Location:	Majestic Hill Subdivision Phase	Latitude:	30° 03' 11" N
	Blanco, TX	Longitude:	098° 30' 25" W
Well County:	Blanco	Elevation:	No Data
Number of Well	s Drilled: 10		
Type of Work:	New Well	Proposed Use	e: Domestic
Drilling Start Dat	te: 9/18/2019 Drilling End Da	te: 9/18/2019	
	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	8	0	50
	6.25	50	640
Drilling Method:	Air Rotary		
Borehole Completion:	Straight Wall		
Annular Seal Data:	No Data		
Seal Method: SI	urry	Distance	to Property Line (ft.): 50
Sealed By: Dr	iller		Septic Field or other d contamination (ft.): 100
		Distanc	e to Septic Tank (ft.): 50
		Μ	ethod of Verification: Land Owner
Surface Completion:	Surface Sleeve Instal	led	Surface Completion by Driller
Water Level:	No Data		
Packers:	Burlap/Neoprene at	50 ft.	
	Burlap/Neoprene at		
	Burlap/Neoprene at		
	Burlap/Neoprene at 3	360 ft.	
Type of Pump:	No Data		
Well Tests:	Jetted	Yield: 8-10 GPM	

		-		
	Strata Depth (ft.)	Water Type		
Water Quality:	450 - 620	M. Trinity		
		Chemical Analy	ysis Made: No	
	Did the driller	knowingly penetrate any str contained injurious con		
	driller's direct superv correct. The driller u	nat the driller drilled this well rision) and that each and all inderstood that failure to cor eturned for completion and r	of the statements he mplete the required in	erein are true and
Company Information:	Apex Drilling, Inc.			
	P.O. Box 867 Marble Falls, TX 7	78654		
Driller Name:	Andrew Jackson	Johnson	License Number:	54989
Comments:	No Data			

Report Amended on 10/8/2019 by Request #28963

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	84	Tan LS
84	116	Gray Tan LS
116	124	Tan LS
124	325	Gray Tan LS
325	450	Tan Ls Gray LS
450	452	Tan LS
452	610	Tan Gray LS
610	640	Gray Tan LS w/ Clay

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	440
4.5	Screen	New Plastic (PVC)	.035	440	460
4.5	Blank	New Plastic (PVC)	SDR17	460	540
4.5	Screen	New Plastic (PVC)	.035	540	560
4.5	Blank	New Plastic (PVC)	SDR17	560	600
4.5	Screen	New Plastic (PVC)	.035	600	620
4.5	Blank	New Plastic (PVC)	SDR17	620	640

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Owner:	LSLP Majestic Hills L	.LC	Owner Well #	8
Address:	P O Box 1897		Grid #:	57-60-6
	Marble Falls , TX 786		Latitude:	30° 03' 11" N
Well Location:	Location: Majestic Hill Subdivision Phase II Blanco, TX		Longitude:	098° 30' 11" W
Well County:	Blanco		Elevation:	No Data
Number of Wells			Lievation.	No Data
	Naw Well		Dran and Line	
Type of Work:	New Well		Proposed Use	e: Domestic
Drilling Start Date	Diameter	ing End Date: 9/17/	op Depth (ft.)	Bottom Depth (ft.)
Borehole:	8		0	50
	6.25		50	620
Drilling Method:	Air Rotary			
Borehole Comple	etion: Straight Wall			
	Top Depth (ft.)	Bottom Depth (ft) Desc	ription (number of sacks & material)
	(m) m	50	3 Bens	eal / 3 Portland 6 Bags/Sacks
Annular Seal Dat	ta: 0	50	0 Bono	ear / 5 Fortianu 'o Bays/Sacks
	od: Slurry	50		perty Line (ft.): 50
		[Distance to Prop Distance to Septic	perty Line (ft.): 50 Field or other
Seal Meth	od: Slurry	[Distance to Prop Distance to Septic concentrated conta	perty Line (ft.): 50
Seal Meth	od: Slurry	[Distance to Prop Distance to Septic concentrated conta Distance to Se	perty Line (ft.): 50 Field or other amination (ft.): 100
Seal Meth Sealed	od: Slurry By: Driller		Distance to Prop Distance to Septic concentrated conta Distance to Se Method	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50
Seal Meth Sealed	od: Slurry By: Driller		Distance to Prop Distance to Septic concentrated contra Distance to Se Method	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner
Seal Meth Sealed I Surface Complet	iod: Slurry By: Driller No Data Burlap/ Neopr Burlap/ Neopr Burlap/ Neopr	e Installed rene at 50 ft.	Distance to Prop Distance to Septic concentrated contra Distance to Se Method	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner
Seal Meth Sealed I Surface Complet Water Level:	iod: Slurry By: Driller No Data Burlap/ Neopr Burlap/ Neopr Burlap/ Neopr	e Installed rene at 50 ft. rene at 55 ft. rene at 395 ft.	Distance to Prop Distance to Septic concentrated contra Distance to Se Method	perty Line (ft.): 50 Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner

	Strata Depth (ft.)	Water Type		
Water Quality:	400 - 600	M. Trinity		
		Chemical Anal	ysis Made: No	
	Did the driller	knowingly penetrate any st contained injurious cor		
Certification Data:	driller's direct superv correct. The driller u	at the driller drilled this wel ision) and that each and all nderstood that failure to co turned for completion and i	of the statements he mplete the required it	erein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all nderstood that failure to con sturned for completion and i	of the statements he mplete the required it	erein are true and
	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all nderstood that failure to con sturned for completion and i	of the statements he mplete the required it	erein are true and
	driller's direct superv correct. The driller u the report(s) being re Apex Drilling, Inc. P.O. Box 867	ision) and that each and all nderstood that failure to con sturned for completion and i 78654	of the statements he mplete the required it	erein are true and

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	14	Tan White LS
14	95	Tan LS
95	210	Gray Tan LS
210	418	Tan Lt Gray LS
418	420	Tan LS
420	580	Tan Gray LS
580	600	Tan LS
600	620	Gray Tan LS w/ Clay

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	400
4.5	Screen	New Plastic (PVC)	.035	400	420
4.5	Blank	New Plastic (PVC)	SDR17	420	540
4.5	Screen	New Plastic (PVC)	.035	540	560
4.5	Blank	New Plastic (PVC)	SDR17	560	580
4.5	Screen	New Plastic (PVC)	.035	580	600
4.5	Blank	New Plastic (PVC)	SDR17	600	620

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

-				_
Owner:	LSLP Majestic Hills LL	С	Owner Well #:	9
Address:	P O Box 1987 Marble Falls , TX 7865	4	Grid #:	57-61-4
Well Location:			Latitude:	30° 03' 27" N
	Blanco, TX		Longitude:	098° 29' 39" W
Well County: Blanco			Elevation:	No Data
Number of Well	s Drilled: 10			
Type of Work:	New Well		Proposed Use	E Domestic
Drilling Start Dat	e: 9/14/2019 Drillin	g End Date: 9/14/20	19	
	Diameter (in	.) Тор	Depth (ft.)	Bottom Depth (ft.)
Borehole:	8		0	50
	6.25		50	565
Drilling Method:	Air Rotary			
Borehole Comple	etion: Straight Wall			
	Top Depth (ft.)	Bottom Depth (ft.)	Descr	iption (number of sacks & material)
Annular Seal Da	ta: 0	50	3 Bens	eal 3 Portland 6 Bags/Sacks
Seal Meth	od: Slurry	ĺ	Distance to Prop	perty Line (ft.): 50
	od: Slurry By: Driller	Dis	tance to Septic	Field or other
	-	Dis	tance to Septic	
	-	Dis	tance to Septic ncentrated conta Distance to Se	Field or other amination (ft.): 100
Sealed	By: Driller	Dis cor	tance to Septic ncentrated conta Distance to Se Method o	Field or other amination (ft.): 100 ptic Tank (ft.): 50
	By: Driller	Dis cor	tance to Septic ncentrated conta Distance to Se Method o	Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner
Sealed Surface Complet	By: Driller	Dis con Installed ne at 50 ft. ne at 55 ft. ne at 300 ft.	tance to Septic ncentrated conta Distance to Se Method o	Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner
Sealed Surface Complet Water Level:	By: Driller tion: Surface Sleeve I No Data Burlap/Neoprer Burlap/Neoprer Burlap/Neoprer	Dis con Installed ne at 50 ft. ne at 55 ft. ne at 300 ft.	tance to Septic ncentrated conta Distance to Se Method o	Field or other amination (ft.): 100 ptic Tank (ft.): 50 of Verification: Land Owner

	Strata Depth (ft.)	Water Type		
Water Quality:	315 - 545	M. Trinity		
		Chemical Anal	ysis Made: No	
	Did the driller I	knowingly penetrate any st contained injurious cor		
Certification Data:	driller's direct supervi correct. The driller ur	at the driller drilled this wel sion) and that each and all nderstood that failure to co turned for completion and i	of the statements he mplete the required	erein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all nderstood that failure to co	of the statements he mplete the required	erein are true and
	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all nderstood that failure to con turned for completion and i	of the statements he mplete the required	erein are true and
	driller's direct supervi correct. The driller un the report(s) being re Apex Drilling, Inc. P.O. Box 867	sion) and that each and all nderstood that failure to con turned for completion and i 8654	of the statements he mplete the required	erein are true and

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	17	Tan LS
17	315	Gray Tan LS
315	328	Tan LS
328	362	Tan Gray LS
362	368	Tan LS
368	500	Tan Gray LS
500	547	Tan LS
547	565	Gray Tan LS

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	465
4.5	Screen	New Plastic (PVC)	.035	465	565

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF 1	EXAS WELL	REPORT for Tr	acking #522247
Owner:	LSLP Majestic H	lills LLC	Owner Well #	≠: 10
	P O Box 1987	× 700F4	Grid #:	57-61-4
	Marble Falls , T		Latitude:	30° 03' 37" N
Well Location: Majestic Hill Subdivision II Blanco, TX			Longitude:	098° 29' 34" W
Well County:	Blanco		Elevation:	No Data
Number of Wells	Drilled: 10			
Type of Work:	New Well		Proposed Us	e: Domestic
Drilling Start Date	: 9/3/2019	Drilling End Date:	9/3/2019	
	Dia	ameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:		8	0	50
		6.25	50	505
Drilling Method:	Air Rotar	У		
orehole Comple	tion: Straight	Wall		
nnular Seal Data	a: No Data			
Seal Metho	od: Slurry		Distance to Pro	perty Line (ft.): 50
Sealed E	By: Driller		Distance to Septic concentrated con	: Field or other tamination (ft.): 100
			Distance to S	eptic Tank (ft.): 50
			Method	of Verification: Land Owne
Surface Completion	on: Surface S	Sleeve Installed	Su	rface Completion by Drille
Water Level:	No Data			
Packers:	Burlap/N	leoprene at 50 ft.		

Packers:	Burlap/Neoprend Burlap/Neoprend Burlap/Neoprend Burlap/Neoprend	e at 55 ft. e at 85 ft.
Type of Pump:	No Data	
Well Tests:	Jetted	Yield: 30 GPM

	Strata Depth (ft.)	Water Type		
Water Quality:	90 - 482	- 482 M. Trinity		
		Chemical Anal	ysis Made: No	
	Did the driller k	knowingly penetrate any st contained injurious cor		
Certification Data:	driller's direct supervis correct. The driller un	at the driller drilled this wel sion) and that each and all nderstood that failure to co turned for completion and	of the statements I mplete the required	herein are true and
Certification Data: Company Information:	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and all nderstood that failure to co	of the statements I mplete the required	herein are true and
	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and all nderstood that failure to co turned for completion and	of the statements I mplete the required	herein are true and
	driller's direct supervis correct. The driller un the report(s) being ret Apex Drilling, Inc. P.O. Box 867	sion) and that each and all nderstood that failure to co turned for completion and i 8654	of the statements I mplete the required	herein are true and I items will result in

Description	Bottom (ft.)	Top (ft.)
Top Soil	1	0
Tan LS	21	1
Gray Tan LS	210	21
Tan LS	235	210
 Gray Tan LS	262	235
Tan LS	270	262
Tan Gray LS	460	270
Tan LS	482	460
 Tan Gray LS w/ Clay	505	482

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	405
4.5	Screen	New Plastic (PVC)	.035	405	425
4.5	Blank	New Plastic (PVC)	SDR17	425	445
4.5	Screen	New Plastic (PVC)	.035	445	485
4.5	Blank	New Plastic (PVC)	SDR17	485	505

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

St. Well No. 57-60-607

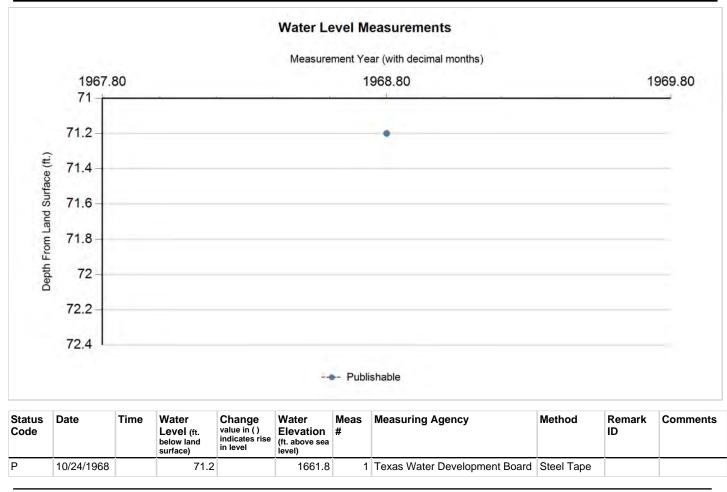
Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-60-607

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5760607
County	Blanco
River Basin	Guadalupe
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Blanco-Pedernales GCD
Latitude (decimal degrees)	30.046667
Latitude (degrees minutes seconds)	30° 02' 48" N
Longitude (decimal degrees)	-98.502501
Longitude (degrees minutes seconds)	098° 30' 09" W
Coordinate Source	+/- 1 Second
Aquifer Code	218GLRSU - Glen Rose Limestone, Upper Member
Aquifer	Trinity
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	1733
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	110
Well Depth Source	Driller's Log
Drilling Start Date	
Drilling End Date	8/18/1967
Drilling Method	Cable Tool
Borehole Completion	Perforated or Slotted


Well Type	Withdrawal of Water
Well Use	Stock
Water Level Observation	Miscellaneous Measurements
Water Quality Available	Yes
Pump	Piston
Pump Depth (feet below land surface)	
Power Type	Windmill
Annular Seal Method	
Surface Completion	
Owner	Max C. Kluge and Hugo Brodbeck
Driller	E.R. Owens
Other Data Available	Drillers Log
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	7/30/1990
Last Update Date	10/21/1998

Remarks Reported yield 46 GPM in 1967.

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
5	Blank	Plastic (PVC)				0 100
5	Screen	Plastic (PVC)			10	00 110
Well Tests - Lithology - N						
Annular Sea	l Range - No D	Data				
Borehole - N	lo Data		Plugg	ged Back - No	Data	
Filter Pack -	No Data			Pac	kers - No Data	

Code Descriptions

Status Code	Status Description
Ρ	Publishable

Water Quality Analysis

 Sample Date:
 10/24/1968
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 U.S. Geological Survey

 Sampled Aquifer:
 Glen Rose Limestone, Upper Member
 Reliability:
 Reliability:
 Reliability:
 Reliability:

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		281.97	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		344	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		110	ug/L	
00910	CALCIUM (MG/L)		81	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		9	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		370	mg/L	
00920	MAGNESIUM (MG/L)		41	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.8	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		690	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		100	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		20	С	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

No. 460494

	STATE OF TEXAS WELL REPORT for Tracking #460494					
Owner:	James Steel	Owner Well #:	No Data			
Address:	1197 Kendalia Ranch Road Blanco, TX 78606	Grid #:	57-61-4			
Well Location:	·	Latitude:	30° 02' 41.7" N			
	Blanco, TX 78606	Longitude:	098° 29' 20.8" W			
Well County:	Blanco	Elevation:	1762 ft. above sea level			
Type of Work:	New Well	Proposed Use:	Domestic			

Drilling Start Date: 9/7/2017 Drilling End Date: 9/12/2017

	Diameter (in.) Top Dej	oth (ft.)	Bottom Depth (ft.)
Borehole:	9	0		460
Drilling Method:	Air Rotary			
Borehole Completion:	Straight Wall			
	Top Depth (ft.)	Bottom Depth (ft.)	De	escription (number of sacks & material)
Annular Seal Data:	0	50		Cement 21 Bags/Sacks
Seal Method: Pr	ressure	Dis	tance to P	roperty Line (ft.): 50
Sealed By: Dr			tic Field or other ntamination (ft.): 150	
		D	istance to	Septic Tank (ft.): 50
			Metho	d of Verification: Measurement
Surface Completion:	Surface Sleeve Ir	nstalled	S	urface Completion by Driller
Water Level:	189 ft. below lan artesian flow on 2	d surface, and 10 GPI 2017-09-12	И	
Packers:	Rubber at 50 ft.			
	Rubber at 55 ft.			
	Rubber at 220 ft	•		
	Na Data			
Type of Pump:	No Data			

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Ma	ade: No	
		vingly penetrate any strata wh contained injurious constituer		
Certification Data:	driller's direct supervision) correct. The driller unders	e driller drilled this well (or the) and that each and all of the stood that failure to complete ed for completion and resubm	statements herein are true the required items will res	e and
Certification Data: Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returne) and that each and all of the stood that failure to complete	statements herein are true the required items will res	e and
	driller's direct supervision; correct. The driller unders the report(s) being returne) and that each and all of the stood that failure to complete ed for completion and resubm	statements herein are true the required items will res	e and
	driller's direct supervision) correct. The driller unders the report(s) being returner Kutscher Drilling 3810 Hunter Road) and that each and all of the stood that failure to complete ed for completion and resubm	statements herein are true the required items will res	e and
Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returner Kutscher Drilling 3810 Hunter Road San Marcos, TX 78666) and that each and all of the stood that failure to complete ed for completion and resubm	statements herein are true the required items will res hittal.	e and

Top (ft.)	Bottom (ft.)	Description
0	2	Top Soil
2	53	Tan Limestone
53	59	Grey Limestone
59	94	Tan Limestone
94	117	Dark Tan Limestone
117	316	Grey Limestone
316	412	Grey/Tan Limestone
412	433	Tan Limestone
433	460	Grey Limestone

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR-17	-2	398
4.5	Blank	New Plastic (PVC)	SDR-17 0.35	398	418

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

No. 144434

STATE OF TEXAS WELL REPORT for Tracking #144434					
Owner:	Linda D. Cox	Owner Well #:	1		
Address:	446 Vanderbilt San Antonio, TX 78210	Grid #:	57-61-4		
Well Location:		Latitude:	30° 02' 36" N		
	Blanco, TX 78606	Longitude:	098° 29' 16" W		
Well County:	Blanco	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 6/2/2008 Drilling End Date: 6/2/2008

	Diameter (in.,) Top Dept	h (ft.)	Bottom Depth (ft.)	
Borehole:	8.62	0		50	
	6.75	50		444	
Drilling Method:	Air Hammer				
Borehole Completion:	Straight Wall				
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & materia	1)
Annular Seal Data:	0	63		5 cement	
Seal Method: gr	avity cemented	Dist	ance to Pr	operty Line (ft.): 75	
Sealed By: Dr	iller			c Field or other htamination (ft.): 120	
		Dis	stance to S	Septic Tank (ft.): No Data	
			Method	d of Verification: estimated	
Surface Completion:	Pitless Adapter L	Jsed			
Water Level:	306 ft. below land	d surface on 2008-06-0	2 Meas	urement Method: Unknowr	1
Packers:	poorboy 63'				
Type of Pump:	No Data				
Well Tests:	Jetted	Yield: 33 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	284, 375, 404	20 grains of hardness		
		Chemical Analysis I	Made: No	
	Did the driller I	knowingly penetrate any strata v contained injurious constitue		
	driller's direct supervision correct. The driller un	at the driller drilled this well (or t sion) and that each and all of th nderstood that failure to complet turned for completion and resub	e statements he te the required it	rein are true and
	driller's direct supervi- correct. The driller ur the report(s) being re	sion) and that each and all of th nderstood that failure to complet	e statements he te the required it	rein are true and
	driller's direct supervi- correct. The driller ur the report(s) being re	sion) and that each and all of th nderstood that failure to complet	e statements he te the required it	rein are true and
Company Information:	driller's direct supervi- correct. The driller ur the report(s) being re L & L Drilling Co. P.O. Box 217	sion) and that each and all of th iderstood that failure to complet turned for completion and resub	e statements he te the required it	rein are true and
	driller's direct supervi- correct. The driller ur the report(s) being rei L & L Drilling Co. P.O. Box 217 Hye, TX 78635	sion) and that each and all of the iderstood that failure to complet turned for completion and resub	e statements he te the required it mittal.	erein are true and ems will result in 1595

Top (ft.)	Bottom (ft.)	Description
0	1	brown topsoil & white limestone
1	58	white & yellow limestone
58	66	gray shale & clay
66	92	yellow limestone
92	138	gray limestone
138	146	yellow limestone
146	370	gray limestone with clay layers
284	304	water 1 gpm
370	444	gray limestone with yellow layers
375	384	water 30 gpm
404	424	water 2 gpm

Dia. (in.) New/Used	Туре	Setting From/To (ft.)	
5 new plastic sol	id +2 -	284 0.265	
5 new plastic slo	tted 28	4 - 304 0.265	
5 new plastic sol	id 304 ·	- 364 0.265	
5 new plastic slo	tted 36	4 - 444 0.265	

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

No. 515975

Owner: Kevi	n & Julie Zinke		Owner Well #:	BP
-	COTTAGE GROVE	ст	Grid #:	57-61-4
	ue City, TX 77573	-	Latitude:	30° 02' 45.3" N
	5 Kendialia Ranch co, TX 78606	Road	Longitude:	098° 29' 12.3" W
	to 1197		-	
Well County: Blan	со		Elevation:	1798 ft. above sea leve
Type of Work: New	Well		Proposed Use	: Domestic
rilling Start Date: 5/3	0/2019 Drilling	End Date: 6/3/	2019	
	Diameter (in.,)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	12		0	7
	9		7	460
rilling Method:	Air Rotary			
prehole Completion:	Open Hole			
	Top Depth (ft.)	Bottom Depth (ft.) Descr	iption (number of sacks & material)
nnular Seal Data:	0	50	(Cement 23 Bags/Sacks
Seal Method: T	remie		Distance to Prop	erty Line (ft.): 50+
Sealed By: D	riller		Distance to Septic concentrated conta	Field or other amination (ft.): Not installed
			Distance to Se	ptic Tank (ft.): Not Installed
			Method of	of Verification: Wheel
Surface Completion:	Surface Sleeve Ir	nstalled	Surf	ace Completion by Driller
	272 ft. below land	d surface on 20 °	19-06-02 Measur	ement Method: Electric Li
	Rubber at 50 ft.		19-06-02 Measur	ement Method: Electric Li
Water Level:			19-06-02 Measur	ement Method: Electric Li

Well Tests: Estimated Yield: 10 GPM

	Strata Depth (ft.)	Water Type		
Water Quality:	390 - 440	Cow Creek		
		Chemical Analysis Made:	No	
	Did the driller kno	wingly penetrate any strata which contained injurious constituents?:	Νο	
Certification Data:	driller's direct supervisior correct. The driller unde	he driller drilled this well (or the wel n) and that each and all of the state rstood that failure to complete the r ned for completion and resubmittal.	ments he	rein are true and
Certification Data: Company Information:	driller's direct supervision correct. The driller unde the report(s) being return	n) and that each and all of the state rstood that failure to complete the r ned for completion and resubmittal.	ments he	rein are true and
	driller's direct supervision correct. The driller unde the report(s) being return	n) and that each and all of the state rstood that failure to complete the r ned for completion and resubmittal. D	ments he	rein are true and
	driller's direct supervision correct. The driller unde the report(s) being return Kutscher Drilling, LTI 3810 Hunter Road	n) and that each and all of the state rstood that failure to complete the r ned for completion and resubmittal. D	ments he equired it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	13	Caliche
13	40	Tan Limestone
40	70	Grey Limestone
70	93	Tan Limestone
93	255	Grey Limestone
255	270	Grey Shale
270	340	Grey Limestone
340	360	Light Brown & Grey Limestone
360	380	Light Brown & Grey Limes w/ Clay
380	460	Grey and Tan Limestone

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR 17	-2	338
4.5	Screen	New Plastic (PVC)	SDR 17 0.035	338	358
4.5	Blank	New Plastic (PVC)	SDR 17	358	398
4.5	Screen	New Plastic (PVC)	SDR 17 0.035	398	418

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

Appendix D

Aquifer Test Data and Analysis

Majestic Hills Well No. 1 - Aquifer Test (September 30, 2019)

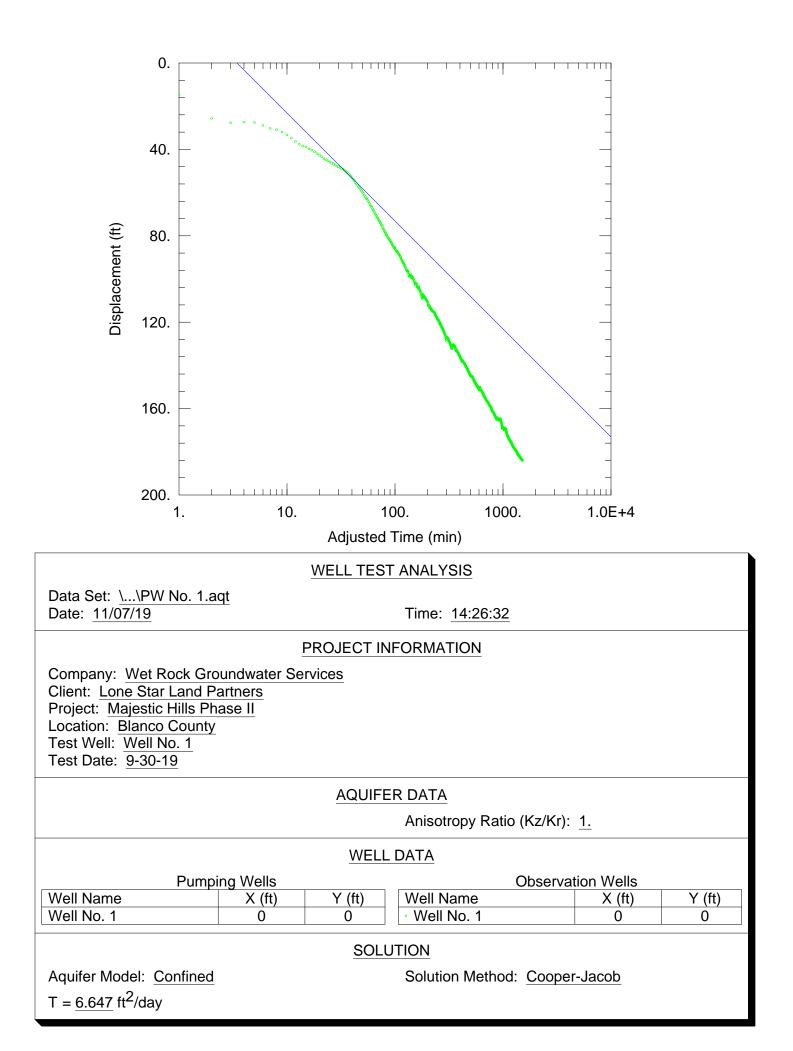
Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 1 Temperature (F)	PW Well No. 1 Water Level (ft bgs)	PW Well No. 1 Water Level (ft MSL)	PW Well No. 1 Drawdown (ft)	PW Well No. 1 Pump Rate (gpm)	PW Well No. 1 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
9/30/19 10:49 AM	0		72.15	377.95	1,431.05	0.00			Pump Start	1,438.10	0.00
9/30/19 10:50 AM	1		71.87	392.64	1,416.36	14.69			Meter: 404,924.494 gallons	1,438.09	0.01
9/30/19 10:51 AM	2		71.67	403.63	1,405.38	25.68				1,438.15	-0.05
9/30/19 10:52 AM	3		71.55	405.71	1,403.29	27.76				1,438.06	0.05
9/30/19 10:53 AM	4		71.47	405.34	1,403.66	27.39	12.5	0.46	pH: 7.3/ EC: 0.88	1,438.10	0.01
9/30/19 10:54 AM	5		71.37	405.56	1,403.44	27.61				1,438.19	-0.09
9/30/19 10:55 AM	6		71.28	406.93	1,402.07	28.98				1,438.10	0.00
9/30/19 10:56 AM	7		71.17	408.26	1,400.74	30.31				1,438.16	-0.05
9/30/19 10:57 AM	8		71.13	408.91	1,400.09	30.96				1,438.05	0.05
9/30/19 10:58 AM	9		71.12	410.01	1,398.99	32.06				1,438.19	-0.09
9/30/19 10:59 AM	10		71.15	411.27	1,397.73	33.33				1,438.14	-0.04
9/30/19 11:00 AM	11		71.08	412.71	1,396.29	34.76				1,438.04	0.06
9/30/19 11:01 AM	12		71.03	414.32	1,394.68	36.37				1,438.03	0.07
9/30/19 11:02 AM	13		71.04	415.52	1,393.49	37.57				1,438.18	-0.07
9/30/19 11:03 AM	14		70.99	416.46	1,392.54	38.51				1,438.04	0.07
9/30/19 11:04 AM	15		70.98	416.84	1,392.16	38.89				1,438.07	0.03
9/30/19 11:09 AM	20		70.83	420.66	1,388.34	42.71				1,438.00	0.10
9/30/19 11:14 AM	25		70.74	423.85	1,385.15	45.90	11.0	0.24		1,438.16	-0.06
9/30/19 11:19 AM	30		70.75	426.03	1,382.97	48.08				1,438.15	-0.05
9/30/19 11:34 AM	45		70.67	434.62	1,374.38	56.67				1,438.10	0.00
9/30/19 11:49 AM	60		70.69	444.19	1,364.81	66.24	11.0	0.17	pH: 7.38/ EC: 0.81	1,438.12	-0.01
9/30/19 12:04 PM	75		70.69	452.93	1,356.07	74.98				1,438.05	0.06
9/30/19 12:19 PM	90		70.68	460.12	1,348.88	82.17				1,438.01	0.10
9/30/19 12:34 PM	105		70.71	465.35	1,343.66	87.40				1,438.04	0.06
9/30/19 12:49 PM	120		70.70	470.67	1,338.33	92.72				1,437.97	0.14
9/30/19 1:19 PM	150		70.70	478.61	1,330.39	100.67				1,437.84	0.26
9/30/19 1:49 PM	180		70.77	486.67	1,322.33	108.72	10.5	0.10		1,437.60	0.51
9/30/19 2:19 PM	210		70.86	490.67	1,318.33	112.72				1,437.55	0.55
9/30/19 2:49 PM	240		70.82	495.31	1,313.70	117.36	10.0	0.09	pH: 7.12/ EC: 0.96	1,437.50	0.60
9/30/19 3:49 PM	300		70.80	505.97	1,303.03	128.02				1,437.76	0.34
9/30/19 4:49 PM	360		70.82	509.29	1,299.71	131.35				1,437.68	0.43
9/30/19 5:49 PM	420		70.89	516.28	1,292.72	138.33				1,437.70	0.40
9/30/19 6:49 PM	480		70.88	520.67	1,288.33	142.72				1,437.66	0.45
9/30/19 7:49 PM	540		70.93	525.27	1,283.73	147.32				1,437.51	0.59
9/30/19 8:49 PM	600		70.90	529.17	1,279.83	151.22				1,437.48	0.62

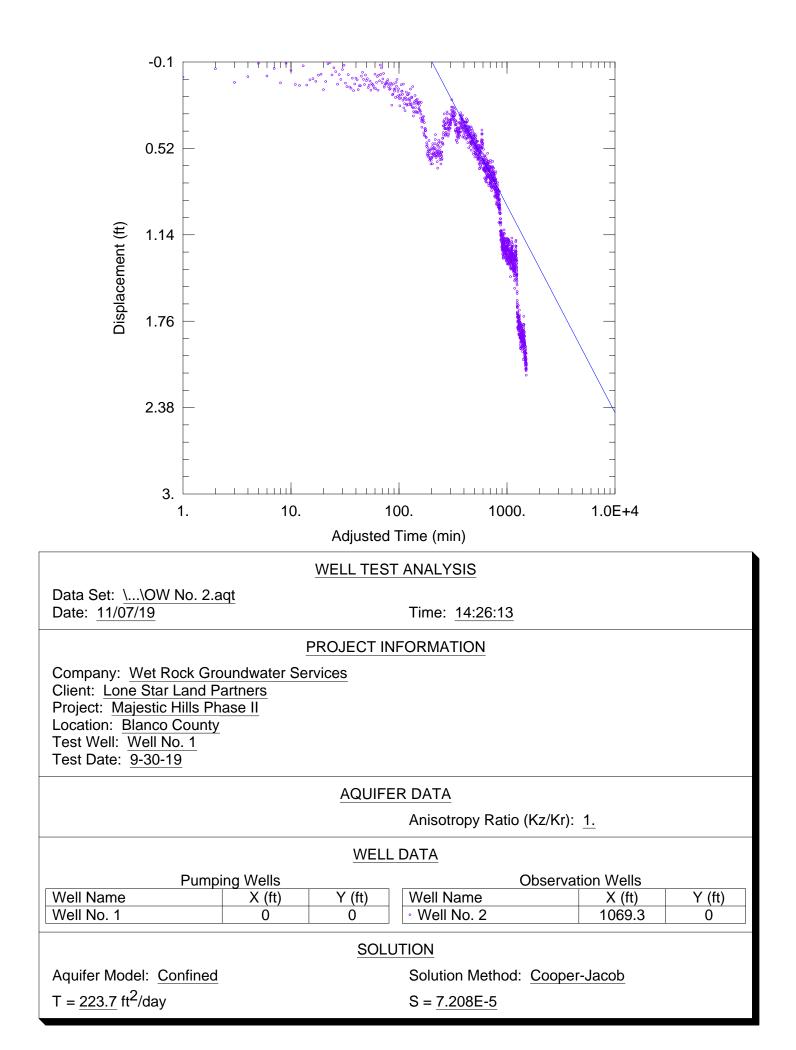
Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 660 ftEC=Electrical conductivity (mS/cm)

Majestic Hills Well No. 1 - Aquifer Test (September 30, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 1 Temperature (F)	PW Well No. 1 Water Level (ft bgs)	PW Well No. 1 Water Level (ft MSL)	PW Well No. 1 Drawdown (ft)	PW Well No. 1 Pump Rate (gpm)	PW Well No. 1 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
9/30/19 9:49 PM	660		70.97	531.57	1,277.43	153.62				1,437.48	0.62
9/30/19 10:49 PM	720		70.94	534.83	1,274.17	156.88				1,437.30	0.80
9/30/19 11:49 PM	780		70.99	537.74	1,271.27	159.79				1,437.40	0.70
10/1/19 12:49 AM	840		70.99	541.09	1,267.91	163.14				1,437.21	0.89
10/1/19 1:49 AM	900		70.94	542.85	1,266.15	164.90				1,436.86	1.25
10/1/19 2:49 AM	960		70.98	543.59	1,265.41	165.64				1,436.89	1.22
10/1/19 3:49 AM	1,020		71.01	547.48	1,261.52	169.53				1,436.80	1.30
10/1/19 4:49 AM	1,080		71.02	549.01	1,259.99	171.06				1,436.78	1.32
10/1/19 5:49 AM	1,140		70.99	552.06	1,256.94	174.11				1,436.72	1.38
10/1/19 6:49 AM	1,200		71.02	553.96	1,255.04	176.01				1,436.85	1.26
10/1/19 7:49 AM	1,260		71.04	555.93	1,253.07	177.98				1,436.34	1.76
10/1/19 8:49 AM	1,320		71.04	557.47	1,251.53	179.53				1,436.28	1.82
10/1/19 9:49 AM	1,380		71.04	559.20	1,249.80	181.25				1,436.24	1.86
10/1/19 10:49 AM	1,440		71.04	560.35	1,248.65	182.40				1,436.20	1.90
10/1/19 11:49 AM	1,500		71.05	561.71	1,247.29	183.77				1,436.05	2.06
10/1/19 12:04 PM	1,515	0	71.10	561.79	1,247.21	183.84	9.0	0.05	Pump Stop	1,436.04	2.07
10/1/19 12:05 PM	1,516	1	71.04	559.86	1,249.14	181.91			Meter: 419,189.672 gallons	1,436.02	2.08
10/1/19 12:06 PM	1,517	2	71.06	552.28	1,256.73	174.33			Avg. Pump Rate: 9.42	1,436.01	2.10
10/1/19 12:07 PM	1,518	3	71.03	545.56	1,263.44	167.61				1,436.01	2.10
10/1/19 12:08 PM	1,519	4	71.22	539.01	1,269.99	161.06				1,436.07	2.03
10/1/19 12:09 PM	1,520	5	71.53	532.83	1,276.17	154.88				1,435.97	2.13
10/1/19 12:10 PM	1,521	6	72.47	527.06	1,281.94	149.11				1,436.03	2.07
10/1/19 12:11 PM	1,522	7	73.13	521.66	1,287.34	143.71				1,436.13	1.97
10/1/19 12:12 PM	1,523	8	73.52	516.49	1,292.51	138.54				1,436.07	2.03
10/1/19 12:13 PM	1,524	9	73.74	511.74	1,297.26	133.79				1,436.00	2.10
10/1/19 12:14 PM	1,525	10	73.90	507.11	1,301.89	129.16				1,436.03	2.07
10/1/19 12:15 PM	1,526	11	74.00	502.75	1,306.25	124.80				1,435.99	2.12
10/1/19 12:16 PM	1,527	12	74.04	498.68	1,310.32	120.73				1,435.92	2.18
10/1/19 12:17 PM	1,528	13	74.09	494.93	1,314.07	116.98				1,436.04	2.06
10/1/19 12:18 PM	1,529	14	74.12	491.29	1,317.71	113.34				1,436.02	2.08
10/1/19 12:19 PM	1,530	15	74.11	488.00	1,321.00	110.05				1,435.98	2.12
10/1/19 12:24 PM	1,535	20	73.69	473.41	1,335.59	95.46				1,435.99	2.11
10/1/19 12:29 PM	1,540	25	72.84	462.93	1,346.07	84.98				1,436.01	2.09
10/1/19 12:34 PM	1,545	30	72.24	456.01	1,352.99	78.06				1,436.00	2.10
10/1/19 12:49 PM	1,560	45	71.51	443.88	1,365.12	65.94				1,435.87	2.23

Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 3 HP


MSL = Mean Sea Level


Pump Setting = 660 ft EC=Electrical conductivity (mS/cm)

Majestic Hills Well No. 1 - Aquifer Test (September 30, 2019)

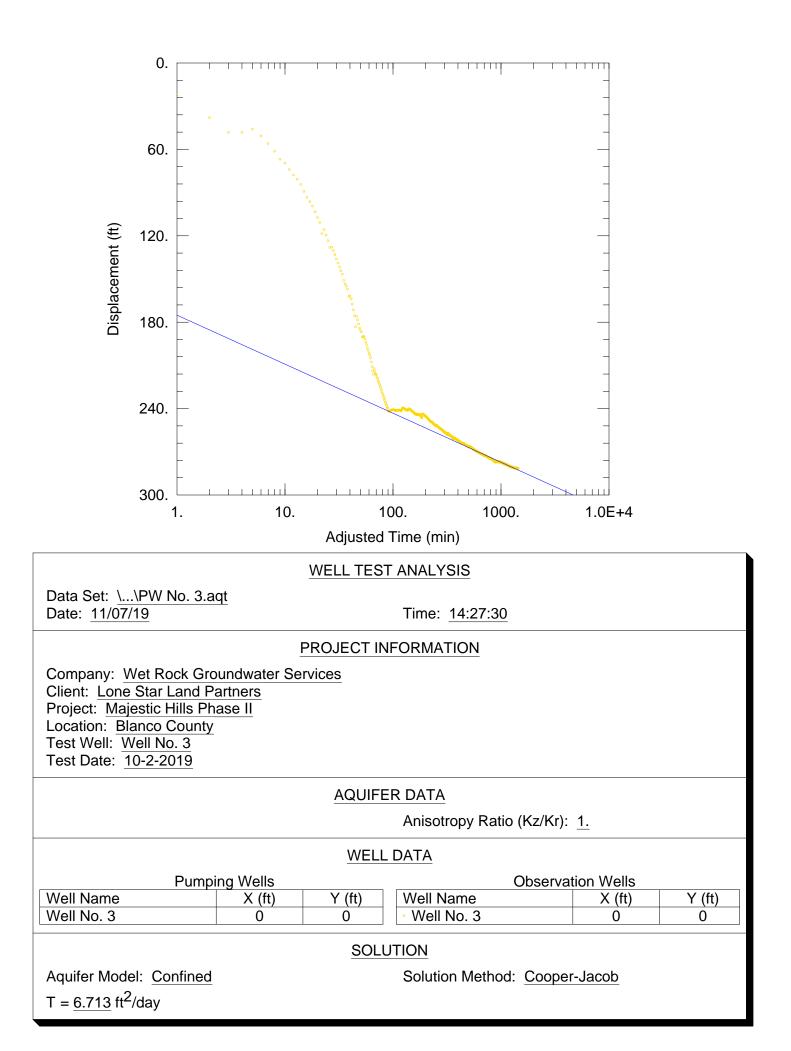
Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 1 Temperature (F)	PW Well No. 1 Water Level (ft bgs)	PW Well No. 1 Water Level (ft MSL)	PW Well No. 1 Drawdown (ft)	PW Well No. 1 Pump Rate (gpm)	PW Well No. 1 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
10/1/19 1:04 PM	1,575	60	71.37	435.40	1,373.60	57.46				1,435.94	2.16
10/1/19 1:19 PM	1,590	75	71.23	426.34	1,382.66	48.39				1,435.91	2.19
10/1/19 1:34 PM	1,605	90	71.18	417.34	1,391.67	39.39				1,435.85	2.26
10/1/19 1:49 PM	1,620	105	71.10	409.55	1,399.45	31.60				1,435.69	2.42
10/1/19 2:04 PM	1,635	120	71.02	407.37	1,401.63	29.42				1,435.80	2.30
10/1/19 2:34 PM	1,665	150	70.99	405.53	1,403.47	27.58				1,435.64	2.46
10/1/19 3:04 PM	1,695	180	71.01	403.58	1,405.42	25.64				1,435.71	2.39
10/1/19 3:17 PM	1,708	193	70.93	402.84	1,406.16	24.89				1,435.59	2.51

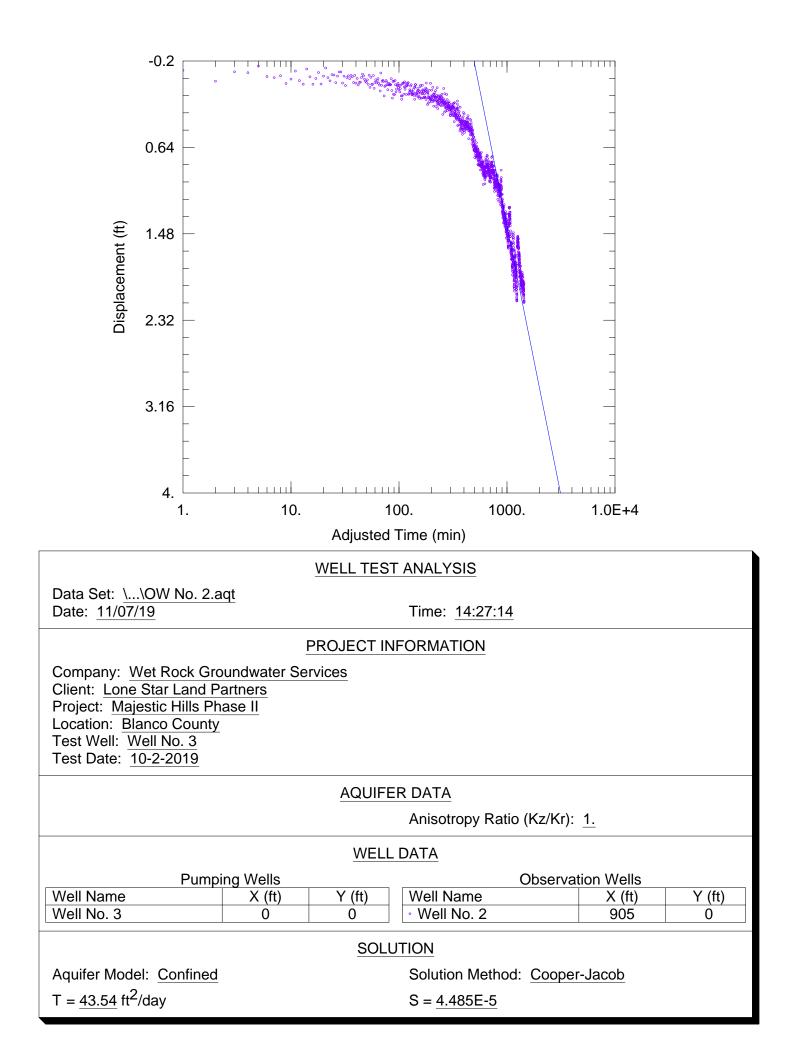
Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 660 ftEC=Electrical conductivity (mS/cm)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 3 Temperature (F)	PW Well No. 3 Water Level (ft bgs)	PW Well No. 3 Water Level (ft MSL)	PW Well No. 3 Drawdown (ft)	PW Well No. 3 Pump Rate (gpm)	PW Well No. 3 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
10/2/19 12:04 PM	0		72.76	317.58	1,496.42	0.00	12.50		Pump Start	378.09	0.00
10/2/19 12:05 PM	1		72.34	340.33	1,473.67	22.75	12.50	0.55	Meter: 419,190.67	377.98	-0.11
10/2/19 12:06 PM	2		72.04	355.65	1,458.35	38.07	12.5	0.33		378.09	0.00
10/2/19 12:07 PM	3		71.83	365.79	1,448.21	48.21	12.5	0.26		378.00	-0.09
10/2/19 12:08 PM	4		71.66	365.91	1,448.09	48.33	12.5	0.26		378.00	-0.08
10/2/19 12:09 PM	5		71.57	363.54	1,450.46	45.96	12.5	0.27		377.94	-0.15
10/2/19 12:10 PM	6		71.52	368.30	1,445.70	50.72	12.5	0.25		378.04	-0.05
10/2/19 12:11 PM	7		71.43	373.52	1,440.48	55.94	12.0	0.21		378.05	-0.04
10/2/19 12:12 PM	8		71.43	378.81	1,435.19	61.23	12.0	0.20		378.03	-0.06
10/2/19 12:13 PM	9		71.39	384.43	1,429.57	66.85	12.0	0.18		378.11	0.02
10/2/19 12:14 PM	10		71.39	387.16	1,426.84	69.58	12.0	0.17		378.07	-0.02
10/2/19 12:15 PM	11		71.38	391.68	1,422.32	74.10	12.0	0.16		377.99	-0.10
10/2/19 12:16 PM	12		71.32	395.44	1,418.56	77.86	12.0	0.15		378.08	-0.01
10/2/19 12:17 PM	13		71.28	398.34	1,415.66	80.76	12.0	0.15		378.12	0.03
10/2/19 12:18 PM	14		71.23	402.02	1,411.98	84.44	12.0	0.14		377.97	-0.12
10/2/19 12:19 PM	15		71.19	406.75	1,407.25	89.17	12.0	0.13		378.04	-0.05
10/2/19 12:24 PM	20		71.14	425.00	1,389.00	107.42	11.0	0.10		378.04	-0.05
10/2/19 12:29 PM	25		71.09	441.04	1,372.96	123.46	11.0	0.09		378.03	-0.06
10/2/19 12:34 PM	30		70.99	453.71	1,360.29	136.13	11.0	0.08		378.10	0.01
10/2/19 12:39 PM	35		70.98	468.60	1,345.40	151.02	10.5	0.07		378.06	-0.03
10/2/19 12:44 PM	40		70.96	479.45	1,334.55	161.87	10.0	0.06		378.11	0.02
10/2/19 12:49 PM	45		70.95	500.80	1,313.20	183.22	10.0	0.05		378.05	-0.04
10/2/19 12:54 PM	50		71.03	503.19	1,310.81	185.61	9.5	0.05		378.10	0.01
10/2/19 12:59 PM	55		71.03	509.34	1,304.66	191.76	9.0	0.05		378.05	-0.04
10/2/19 1:04 PM	60		71.07	519.05	1,294.95	201.47	9.0	0.04		378.10	0.01
10/2/19 1:19 PM	75		71.19	540.79	1,273.22	223.21	9.0	0.04		378.13	0.04
10/2/19 1:34 PM	90		71.12	558.40	1,255.60	240.82	7.0	0.03	Reducd Pumping Rate	378.09	0.00
10/2/19 1:49 PM	105		71.23	558.82	1,255.18	241.24	7.0	0.03		378.23	0.14
10/2/19 2:04 PM	120		71.23	559.20	1,254.80	241.62	7.0	0.03		378.11	0.02
10/2/19 2:19 PM	135		71.25	558.62	1,255.38	241.04	7.0	0.03		378.21	0.12
10/2/19 2:34 PM	150		71.21	559.37	1,254.63	241.79	7.0	0.03		378.16	0.07
10/2/19 2:49 PM	165		71.18	561.80	1,252.20	244.22	7.0	0.03		378.13	0.04
10/2/19 3:04 PM	180		71.26	562.47	1,251.53	244.89	7.0	0.03		378.16	0.07
10/2/19 3:34 PM	210		71.20	564.38	1,249.62	246.80	7.0	0.03		378.33	0.24
10/2/19 4:04 PM	240		71.22	568.44	1,245.56	250.86				378.24	0.16

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 620 ftEC=Electrical conductivity (mS/cm)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 3 Temperature (F)	PW Well No. 3 Water Level (ft bgs)	PW Well No. 3 Water Level (ft MSL)	PW Well No. 3 Drawdown (ft)	PW Well No. 3 Pump Rate (gpm)	PW Well No. 3 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
10/2/19 4:34 PM	270		71.26	571.14	1,242.86	253.56				378.35	0.26
10/2/19 5:04 PM	300		71.24	573.88	1,240.12	256.30				378.42	0.33
10/2/19 6:04 PM	360		71.23	577.99	1,236.01	260.41				378.46	0.37
10/2/19 7:04 PM	420		71.26	580.84	1,233.16	263.26				378.52	0.43
10/2/19 8:04 PM	480		71.28	583.05	1,230.95	265.47				378.61	0.52
10/2/19 9:04 PM	540		71.27	585.12	1,228.88	267.54				378.75	0.66
10/2/19 10:04 PM	600		71.28	587.54	1,226.46	269.96				378.92	0.83
10/2/19 11:04 PM	660		71.25	588.99	1,225.01	271.41				378.97	0.88
10/3/19 12:04 AM	720		71.28	590.40	1,223.60	272.82				378.91	0.82
10/3/19 1:04 AM	780		71.29	591.86	1,222.14	274.28				379.11	1.02
10/3/19 2:04 AM	840		71.31	593.21	1,220.79	275.63				379.10	1.01
10/3/19 3:04 AM	900		71.32	594.84	1,219.16	277.26				379.26	1.18
10/3/19 4:04 AM	960		71.31	594.83	1,219.17	277.25				379.51	1.42
10/3/19 5:04 AM	1,020		71.35	594.98	1,219.02	277.40				379.64	1.55
10/3/19 6:04 AM	1,080		71.34	596.15	1,217.85	278.57				379.54	1.45
10/3/19 7:04 AM	1,140		71.28	596.73	1,217.27	279.15				379.89	1.80
10/3/19 8:04 AM	1,200		71.33	597.66	1,216.34	280.08				379.89	1.80
10/3/19 9:04 AM	1,260		71.33	598.21	1,215.79	280.63				379.63	1.54
10/3/19 10:04 AM	1,320		71.32	598.66	1,215.34	281.08				379.96	1.87
10/3/19 11:04 AM	1,380		71.34	598.70	1,215.30	281.12				380.07	1.98
10/3/19 12:04 PM	1,440		71.36	599.22	1,214.78	281.64				380.22	2.13
10/3/19 12:06 PM	1,442	0	71.35	599.36	1,214.64	281.78	6.1	0.02	Pump Stop	380.06	1.97
10/3/19 12:07 PM	1,443	1	71.36	598.76	1,215.24	281.18			Meter: 428,529.05	380.14	2.05
10/3/19 12:08 PM	1,444	2	71.35	593.72	1,220.29	276.14			Avg. Pump Rate: 6.48	380.21	2.12
10/3/19 12:09 PM	1,445	3	71.95	589.07	1,224.93	271.49				380.15	2.06
10/3/19 12:10 PM	1,446	4	72.66	584.25	1,229.75	266.67				380.08	1.99
10/3/19 12:11 PM	1,447	5	73.16	579.35	1,234.65	261.77				380.19	2.10
10/3/19 12:12 PM	1,448	6	73.61	574.75	1,239.25	257.17				380.04	1.95
10/3/19 12:13 PM	1,449	7	73.82	570.07	1,243.93	252.49				380.20	2.11
10/3/19 12:14 PM	1,450	8	74.03	565.50	1,248.50	247.92				380.16	2.07
10/3/19 12:15 PM	1,451	9	74.16	560.87	1,253.14	243.29				380.17	2.08
10/3/19 12:16 PM	1,452	10	74.17	556.38	1,257.62	238.80				380.14	2.06
10/3/19 12:17 PM	1,453	11	74.24	551.92	1,262.08	234.34				380.13	2.05
10/3/19 12:18 PM	1,454	12	74.23	547.48	1,266.52	229.90				380.11	2.02
10/3/19 12:19 PM	1,455	13	74.23	543.03	1,270.97	225.45				380.13	2.04


Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 620 ftEC=Electrical conductivity (mS/cm)


Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 3 Temperature (F)	PW Well No. 3 Water Level (ft bgs)	PW Well No. 3 Water Level (ft MSL)	PW Well No. 3 Drawdown (ft)	PW Well No. 3 Pump Rate (gpm)	PW Well No. 3 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
10/3/19 12:20 PM	1,456	14	74.18	538.60	1,275.40	221.02				380.11	2.02
10/3/19 12:21 PM	1,457	15	74.14	534.46	1,279.55	216.88				380.07	1.98
10/3/19 12:26 PM	1,462	20	74.19	513.63	1,300.38	196.05				380.05	1.96
10/3/19 12:31 PM	1,467	25	72.75	492.95	1,321.05	175.37				380.16	2.07
10/3/19 12:36 PM	1,472	30	72.09	475.14	1,338.86	157.56				380.11	2.02
10/3/19 12:41 PM	1,477	35	71.77	459.09	1,354.91	141.51				380.23	2.14
10/3/19 12:46 PM	1,482	40	71.65	445.28	1,368.72	127.70				380.23	2.14
10/3/19 12:51 PM	1,487	45	71.55	433.98	1,380.02	116.40				380.13	2.04
10/3/19 12:56 PM	1,492	50	71.48	422.86	1,391.14	105.28				380.21	2.12
10/3/19 1:01 PM	1,497	55	71.46	412.63	1,401.38	95.05				380.25	2.16
10/3/19 1:06 PM	1,502	60	71.43	404.44	1,409.56	86.86				380.17	2.08
10/3/19 1:21 PM	1,517	75	71.42	387.00	1,427.00	69.42				380.22	2.13
10/3/19 1:36 PM	1,532	90	71.31	376.85	1,437.15	59.27				380.19	2.10
10/3/19 1:51 PM	1,547	105	71.32	370.32	1,443.68	52.74				380.25	2.16
10/3/19 2:06 PM	1,562	120	71.24	365.72	1,448.28	48.14				380.22	2.13
10/3/19 2:21 PM	1,577	135	71.26	362.36	1,451.64	44.78				380.17	2.08
10/3/19 2:36 PM	1,592	150	71.26	359.62	1,454.39	42.04				380.14	2.05
10/3/19 2:51 PM	1,607	165	71.27	357.35	1,456.65	39.77				380.31	2.22
10/3/19 3:06 PM	1,622	180	71.20	355.58	1,458.43	38.00				380.34	2.25
10/3/19 3:36 PM	1,652	210	71.12	352.57	1,461.43	34.99				380.37	2.28
10/3/19 4:06 PM	1,682	240	71.12	350.53	1,463.47	32.95				380.37	2.28
10/3/19 4:36 PM	1,712	270	71.13	348.56	1,465.45	30.98				380.03	1.94
10/3/19 5:06 PM	1,742	300	71.13	346.78	1,467.22	29.20				380.16	2.07
10/3/19 6:06 PM	1,802	360	71.14	344.00	1,470.01	26.42				380.51	2.42
10/3/19 7:06 PM	1,862	420	71.12	341.48	1,472.52	23.90				380.75	2.66
10/3/19 8:06 PM	1,922	480	71.10	339.58	1,474.42	22.00				380.91	2.82
10/3/19 9:06 PM	1,982	540	71.14	338.05	1,475.95	20.47				380.66	2.57
10/3/19 10:06 PM	2,042	600	71.14	336.65	1,477.35	19.07				380.64	2.55
10/3/19 11:06 PM	2,102	660	71.16	335.49	1,478.52	17.91				381.02	2.93
10/4/19 12:06 AM	2,162	720	71.20	334.57	1,479.43	16.99				381.14	3.05
10/4/19 1:06 AM	2,222	780	71.15	333.67	1,480.33	16.09				381.30	3.21
10/4/19 2:06 AM	2,282	840	71.15	332.77	1,481.23	15.19				381.57	3.49
10/4/19 3:06 AM	2,342	900	71.11	332.20	1,481.80	14.62				381.52	3.43

Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 3 HP MSL = Mean Sea Level

Pump Setting = 620 ft EC=Electrical conductivity (mS/cm)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 3 Temperature (F)	PW Well No. 3 Water Level (ft bgs)	PW Well No. 3 Water Level (ft MSL)	PW Well No. 3 Drawdown (ft)	PW Well No. 3 Pump Rate (gpm)	PW Well No. 3 Specific Capacity (gpm/ft)	Comments	OW Well No. 2 Water Level (ft MSL)	OW Well No. 2 Drawdown (ft)
10/4/19 4:06 AM	2,402	960	71.15	331.63	1,482.37	14.05				381.57	3.48
10/4/19 5:06 AM	2,462	1020	71.14	331.38	1,482.62	13.80				381.63	3.54
10/4/19 6:06 AM	2,522	1080	71.17	330.97	1,483.03	13.39				381.76	3.67
10/4/19 7:06 AM	2,582	1140	71.14	330.70	1,483.30	13.12				381.83	3.74
10/4/19 8:06 AM	2,642	1200	71.18	330.44	1,483.56	12.86				381.79	3.70
10/4/19 9:06 AM	2,702	1260	71.21	330.19	1,483.81	12.61				380.66	2.57

Majestic Hills Phase II Well No. 4 - Aquifer Test (September 23, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 4 Temperature (F)	PW Well No. 4 Water Level (ft bgs)	PW Well No. 4 Water Level (ft MSL)	PW Well No. 4 Drawdown (ft)	PW Well No. 4 Pump Rate (gpm)	PW Well No. 4 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/23/19 10:02 AM	0		70.92	352.45	1,389.55	0.00			Pump Start	1,518.17	0.00
9/23/19 10:03 AM	1		70.95	357.95	1,384.05	5.50	12.50	2.27	Meter = 398,671.75 gallons	1,518.19	-0.02
9/23/19 10:04 AM	2		70.94	369.83	1,372.17	17.38	12.5	0.72		1,518.19	-0.01
9/23/19 10:05 AM	3		70.93	377.82	1,364.18	25.38	12.5	0.49		1,518.16	0.01
9/23/19 10:06 AM	4		70.98	383.18	1,358.82	30.73	12.0	0.39		1,518.19	-0.02
9/23/19 10:07 AM	5		70.96	387.36	1,354.64	34.91	12.0	0.34		1,518.15	0.03
9/23/19 10:08 AM	6		70.92	393.43	1,348.57	40.98	12.0	0.29		1,518.17	0.00
9/23/19 10:09 AM	7		70.90	400.85	1,341.15	48.40	12.0	0.25		1,518.18	-0.01
9/23/19 10:10 AM	8		70.85	408.51	1,333.49	56.06	12.0	0.21		1,518.17	0.00
9/23/19 10:11 AM	9		70.87	412.98	1,329.02	60.54	12.0	0.20		1,518.18	0.00
9/23/19 10:12 AM	10		70.83	419.92	1,322.08	67.47	12.0	0.18		1,518.17	0.00
9/23/19 10:13 AM	11		70.84	426.07	1,315.93	73.62	12.0	0.16		1,518.18	0.00
9/23/19 10:14 AM	12		70.81	431.97	1,310.03	79.52	12.0	0.15		1,518.20	-0.02
9/23/19 10:15 AM	13		70.79	437.45	1,304.55	85.00	12.0	0.14		1,518.18	-0.01
9/23/19 10:16 AM	14		70.78	442.74	1,299.26	90.30	11.0	0.12		1,518.16	0.01
9/23/19 10:17 AM	15		70.77	447.91	1,294.09	95.46	11.0	0.12		1,518.17	0.00
9/23/19 10:22 AM	20		70.77	466.30	1,275.70	113.85	3.6	0.03	Reduced Pumping Rate	1,518.19	-0.02
9/23/19 10:27 AM	25		70.84	460.04	1,281.96	107.59	3.7	0.03		1,518.19	-0.02
9/23/19 10:32 AM	30		70.89	454.57	1,287.43	102.13	3.7	0.04		1,518.19	-0.02
9/23/19 10:37 AM	35		70.93	450.88	1,291.12	98.43	4.3	0.04	Increased Pumping Rate	1,518.16	0.01
9/23/19 10:42 AM	40		70.97	449.17	1,292.83	96.72	5.6	0.06		1,518.20	-0.03
9/23/19 10:47 AM	45		71.04	453.17	1,288.83	100.72	5.6	0.06		1,518.16	0.01
9/23/19 10:52 AM	50		71.11	456.37	1,285.63	103.92	4.2	0.04	Reduced Pumping Rate	1,518.16	0.02
9/23/19 10:57 AM	55		71.14	455.84	1,286.16	103.39	4.2	0.04		1,518.17	0.01
9/23/19 11:02 AM	60		71.21	453.97	1,288.03	101.52	4.2	0.04		1,518.17	0.00
9/23/19 11:17 AM	75		71.44	450.68	1,291.32	98.23	4.4	0.04		1,518.24	-0.07
9/23/19 11:32 AM	90		71.44	452.97	1,289.03	100.52	4.2	0.04		1,518.22	-0.04
9/23/19 11:47 AM	105		71.48	454.55	1,287.45	102.10	4.2	0.04		1,518.21	-0.03
9/23/19 12:02 PM	120		71.61	455.78	1,286.22	103.33	4.2	0.04		1,518.20	-0.03
9/23/19 12:17 PM	135		71.73	456.98	1,285.02	104.53	4.2	0.04		1,518.20	-0.03
9/23/19 12:32 PM	150		71.75	458.09	1,283.91	105.64	4.2	0.04		1,518.19	-0.02
9/23/19 12:47 PM	165		71.82	459.33	1,282.67	106.89	4.2	0.04		1,518.22	-0.05
9/23/19 1:02 PM	180		71.85	460.50	1,281.50	108.05	4.2	0.04	pH: 7.79; EC: 1.32	1,518.13	0.04
9/23/19 1:32 PM	210		71.91	461.94	1,280.06	109.49				1,518.22	-0.05
9/23/19 2:02 PM	240		71.98	463.66	1,278.34	111.21				1,518.22	-0.05

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 460 ftEC=Electrical conductivity (mS/cm)

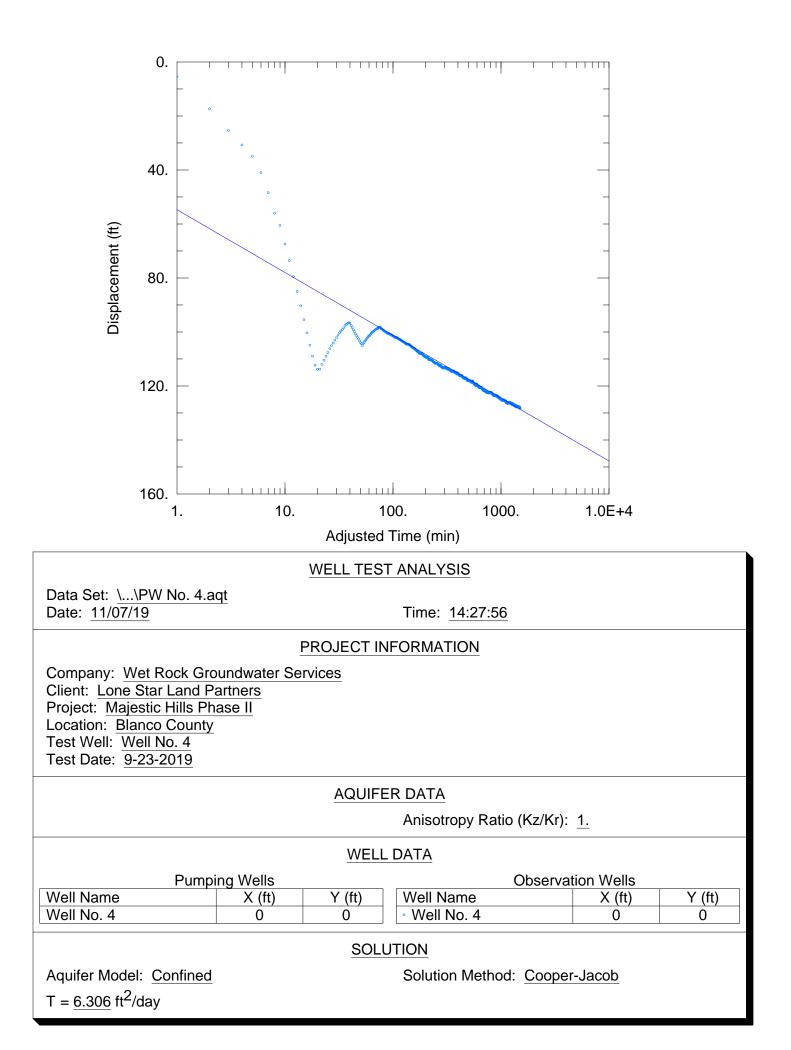
Majestic Hills Phase II Well No. 4 - Aquifer Test (September 23, 2019)

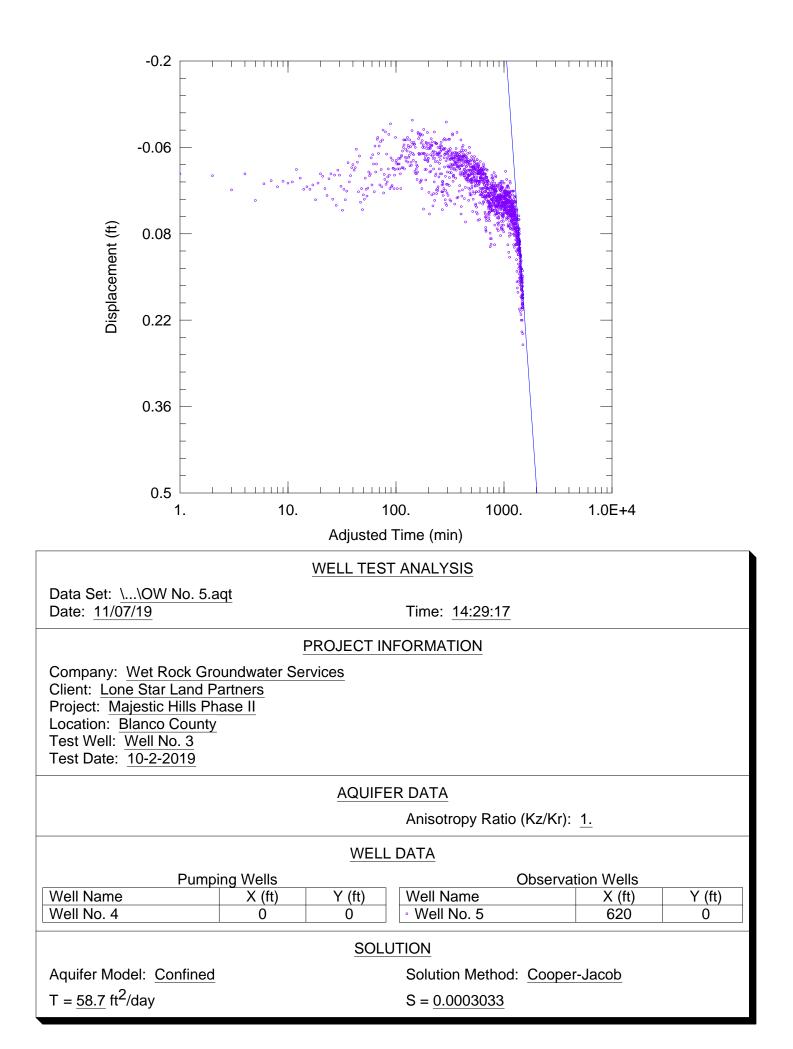
Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 4 Temperature (F)	PW Well No. 4 Water Level (ft bgs)	PW Well No. 4 Water Level (ft MSL)	PW Well No. 4 Drawdown (ft)	PW Well No. 4 Pump Rate (gpm)	PW Well No. 4 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/23/19 3:02 PM	300		72.06	465.63	1,276.37	113.18				1,518.17	0.00
9/23/19 4:02 PM	360		72.14	466.93	1,275.07	114.48				1,518.23	-0.06
9/23/19 5:02 PM	420		72.16	468.69	1,273.31	116.24				1,518.22	-0.05
9/23/19 6:02 PM	480		72.13	469.76	1,272.24	117.31				1,518.23	-0.06
9/23/19 7:02 PM	540		72.20	470.95	1,271.05	118.50				1,518.19	-0.02
9/23/19 8:02 PM	600		72.24	472.01	1,269.99	119.56				1,518.17	0.01
9/23/19 9:02 PM	660		72.21	473.04	1,268.96	120.60				1,518.16	0.01
9/23/19 10:02 PM	720		72.21	474.59	1,267.41	122.14				1,518.14	0.03
9/23/19 11:02 PM	780		72.24	474.77	1,267.23	122.32				1,518.15	0.02
9/24/19 12:02 AM	840		72.25	475.60	1,266.40	123.15				1,518.12	0.05
9/24/19 1:02 AM	900		72.26	476.08	1,265.92	123.63				1,518.15	0.02
9/24/19 2:02 AM	960		72.25	476.82	1,265.18	124.37				1,518.17	0.01
9/24/19 3:02 AM	1,020		72.24	477.49	1,264.51	125.04				1,518.16	0.02
9/24/19 4:02 AM	1,080		72.32	477.78	1,264.22	125.34				1,518.14	0.03
9/24/19 5:02 AM	1,140		72.24	478.75	1,263.25	126.30				1,518.16	0.01
9/24/19 6:02 AM	1,200		72.24	478.62	1,263.38	126.17				1,518.13	0.05
9/24/19 7:02 AM	1,260		72.28	479.13	1,262.87	126.68				1,518.14	0.04
9/24/19 8:02 AM	1,320		72.25	479.48	1,262.52	127.03				1,518.03	0.14
9/24/19 9:02 AM	1,380		72.30	479.92	1,262.08	127.47				1,518.07	0.10
9/24/19 10:02 AM	1,440		72.30	480.11	1,261.89	127.66				1,517.96	0.21
9/24/19 11:02 AM	1,500		72.27	480.68	1,261.32	128.24				1,518.02	0.15
9/24/19 11:04 AM	1,502	0	72.20	480.64	1,261.36	128.20	4.0	0.03	Pump Stop	1,517.98	0.20
9/24/19 11:05 AM	1,503	1	72.27	478.90	1,263.10	126.45			Meter = 404,924.53 gallons	1,517.99	0.18
9/24/19 11:06 AM	1,504	2	72.32	475.55	1,266.45	123.10			Avg. Pump Rate: 4.16	1,518.00	0.18
9/24/19 11:07 AM	1,505	3	72.33	472.66	1,269.34	120.21				1,517.98	0.19
9/24/19 11:08 AM	1,506	4	72.39	469.91	1,272.09	117.46				1,517.97	0.21
9/24/19 11:09 AM	1,507	5	72.39	467.33	1,274.67	114.89				1,518.02	0.16
9/24/19 11:10 AM	1,508	6	72.41	464.90	1,277.10	112.46				1,517.99	0.18
9/24/19 11:11 AM	1,509	7	72.47	462.66	1,279.34	110.21				1,517.97	0.20
9/24/19 11:12 AM	1,510	8	72.43	460.31	1,281.69	107.86				1,517.96	0.22
9/24/19 11:13 AM	1,511	9	72.45	458.09	1,283.91	105.64				1,518.00	0.18
9/24/19 11:14 AM	1,512	10	72.45	456.05	1,285.95	103.61				1,517.98	0.19
9/24/19 11:15 AM	1,513	11	72.50	454.06	1,287.94	101.61				1,518.00	0.18
9/24/19 11:16 AM	1,514	12	72.44	452.20	1,289.80	99.75				1,518.00	0.17
9/24/19 11:17 AM	1,515	13	72.51	450.37	1,291.63	97.92				1,517.97	0.20

Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 3 HP

MSL = Mean Sea Level

Pump Setting = 460 ft EC=Electrical conductivity (mS/cm)


Majestic Hills Phase II Well No. 4 - Aquifer Test (September 23, 2019)


Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 4 Temperature (F)	PW Well No. 4 Water Level (ft bgs)	PW Well No. 4 Water Level (ft MSL)	PW Well No. 4 Drawdown (ft)	PW Well No. 4 Pump Rate (gpm)	PW Well No. 4 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/24/19 11:18 AM	1,516	14	72.52	448.50	1,293.50	96.05				1,517.98	0.20
9/24/19 11:19 AM	1,517	15	72.55	446.89	1,295.11	94.44				1,517.98	0.19
9/24/19 11:24 AM	1,522	20	72.49	439.42	1,302.58	86.98				1,517.98	0.20
9/24/19 11:29 AM	1,527	25	72.41	433.27	1,308.73	80.82				1,517.97	0.20
9/24/19 11:34 AM	1,532	30	72.36	428.26	1,313.74	75.81				1,518.01	0.17
9/24/19 11:39 AM	1,537	35	72.30	424.02	1,317.98	71.58				1,517.97	0.20
9/24/19 11:44 AM	1,542	40	72.20	420.31	1,321.69	67.86				1,517.97	0.20
9/24/19 11:49 AM	1,547	45	72.11	417.50	1,324.50	65.05				1,517.99	0.18
9/24/19 11:54 AM	1,552	50	71.97	415.24	1,326.76	62.79				1,517.96	0.21
9/24/19 11:59 AM	1,557	55	72.01	413.01	1,328.99	60.56				1,518.03	0.15
9/24/19 12:04 PM	1,562	60	71.89	411.08	1,330.92	58.63				1,517.97	0.20
9/24/19 12:19 PM	1,577	75	71.84	406.46	1,335.54	54.01				1,517.98	0.20
9/24/19 12:34 PM	1,592	90	71.71	402.94	1,339.06	50.49				1,518.01	0.17
9/24/19 12:49 PM	1,607	105	71.70	400.31	1,341.69	47.86				1,518.02	0.15
9/24/19 1:11 PM	1,622	120	71.65	397.52	1,344.48	45.07				1,518.01	0.16
9/24/19 1:26 PM	1,637	135	71.59	396.02	1,345.98	43.57				1,517.75	0.42
9/24/19 1:41 PM	1,652	150	71.59	394.74	1,347.26	42.29				1,517.82	0.35
9/24/19 1:56 PM	1,667	165	71.60	393.57	1,348.43	41.12				1,517.89	0.28
9/24/19 2:11 PM	1,682	180	71.50	392.65	1,349.35	40.20				1,517.92	0.26
9/24/19 2:41 PM	1,712	210	71.44	390.91	1,351.09	38.46				1,517.89	0.28
9/24/19 3:11 PM	1,742	240	71.38	389.37	1,352.63	36.93				1,517.92	0.25
9/24/19 4:11 PM	1,802	300	71.32	387.10	1,354.90	34.65				1,517.85	0.32
9/24/19 5:11 PM	1,862	360	71.25	385.30	1,356.70	32.85				1,517.88	0.30
9/24/19 6:11 PM	1,922	420	71.22	383.75	1,358.25	31.30				1,517.93	0.25
9/24/19 7:11 PM	1,982	480	71.17	382.39	1,359.61	29.94				1,517.85	0.32
9/24/19 8:11 PM	2,042	540	71.13	381.34	1,360.66	28.89				1,517.87	0.30
9/24/19 9:11 PM	2,102	600	71.12	380.37	1,361.63	27.92				1,517.89	0.28
9/24/19 10:11 PM	2,162	660	71.09	379.46	1,362.54	27.02				1,517.85	0.32
9/24/19 11:11 PM	2,222	720	71.12	378.57	1,363.43	26.12				1,517.86	0.31
9/25/19 12:11 AM	2,282	780	71.09	377.67	1,364.33	25.22				1,517.90	0.27
9/25/19 1:11 AM	2,342	840	71.05	377.07	1,364.93	24.62				1,517.82	0.35
9/25/19 2:11 AM	2,402	900	71.07	376.35	1,365.65	23.90				1,517.88	0.29
9/25/19 3:11 AM	2,462	960	71.08	375.68	1,366.32	23.23				1,517.90	0.27

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 460 ftEC=Electrical conductivity (mS/cm)

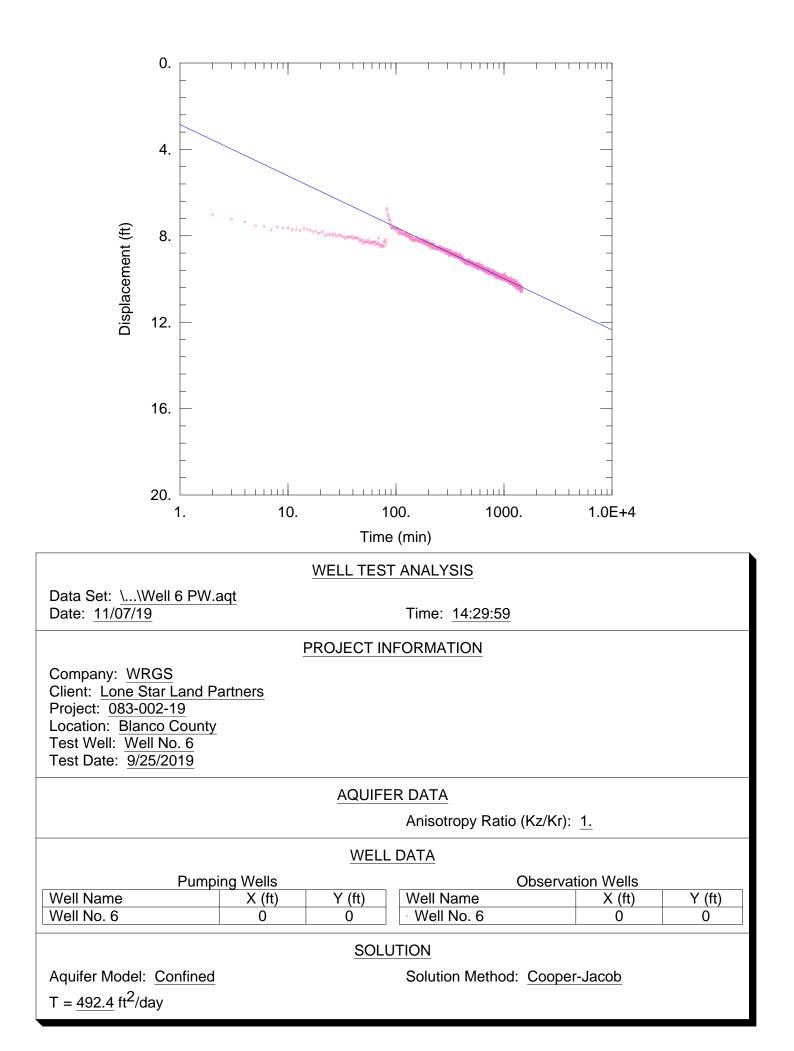
Majestic Hills Phase II Well No. 4 - Aquifer Test (September 23, 2019)

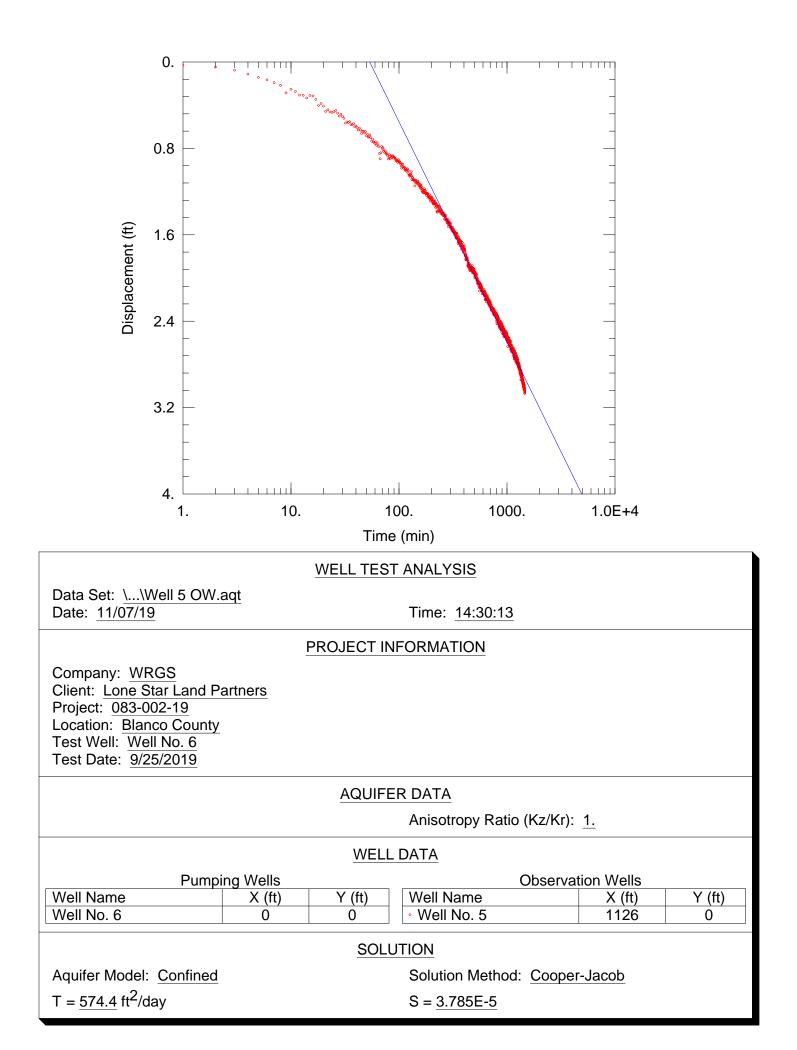
Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 4 Temperature (F)	PW Well No. 4 Water Level (ft bgs)	PW Well No. 4 Water Level (ft MSL)	PW Well No. 4 Drawdown (ft)	PW Well No. 4 Pump Rate (gpm)	PW Well No. 4 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/25/19 4:11 AM	2,522	1020	71.04	374.99	1,367.01	22.54				1,517.89	0.29
9/25/19 5:11 AM	2,582	1080	71.04	374.39	1,367.61	21.94				1,517.85	0.32
9/25/19 6:11 AM	2,642	1140	71.04	373.75	1,368.25	21.30				1,517.85	0.32
9/25/19 7:11 AM	2,702	1200	71.04	373.25	1,368.75	20.81				1,517.86	0.31
9/25/19 8:11 AM	2,762	1260	71.03	372.51	1,369.49	20.06				1,517.82	0.35
9/25/19 9:11 AM	2,822	1320	71.00	371.97	1,370.03	19.52				1,517.79	0.38

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 6 Temperature (F)	PW Well No. 6 Water Level (ft bgs)	PW Well No. 6 Water Level (ft MSL)	PW Well No. 6 Drawdown (ft)	PW Well No. 6 Pump Rate (gpm)	PW Well No. 6 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/25/19 10:13 AM	0		71.07	136.98	1,512.02	0.00			Pump Start	1,517.78	0.00
9/25/19 10:14 AM	1		71.02	143.34	1,505.66	6.35	33.00	5.19	Meter: 48,685 gallons	1,517.75	0.03
9/25/19 10:15 AM	2		71.02	144.00	1,505.00	7.02	33.0	4.70		1,517.73	0.05
9/25/19 10:16 AM	3		71.00	144.21	1,504.79	7.22	33.0	4.57		1,517.70	0.08
9/25/19 10:17 AM	4		70.94	144.34	1,504.66	7.36	33.0	4.48		1,517.66	0.11
9/25/19 10:18 AM	5		70.84	144.52	1,504.48	7.54	33.0	4.38		1,517.63	0.14
9/25/19 10:19 AM	6		70.68	144.56	1,504.44	7.58	33.0	4.36		1,517.61	0.17
9/25/19 10:20 AM	7		70.63	144.72	1,504.28	7.74	34.0	4.39		1,517.59	0.19
9/25/19 10:21 AM	8		70.56	144.58	1,504.42	7.60	33.0	4.34		1,517.56	0.22
9/25/19 10:22 AM	9		70.50	144.63	1,504.37	7.65	33.0	4.32		1,517.49	0.29
9/25/19 10:23 AM	10		70.52	144.62	1,504.38	7.63	33.0	4.32		1,517.52	0.25
9/25/19 10:24 AM	11		70.49	144.71	1,504.29	7.72	33.0	4.27		1,517.50	0.27
9/25/19 10:25 AM	12		70.44	144.71	1,504.29	7.72	33.0	4.27		1,517.47	0.31
9/25/19 10:26 AM	13		70.44	144.75	1,504.25	7.76	33.0	4.25		1,517.47	0.31
9/25/19 10:27 AM	14		70.42	144.64	1,504.36	7.66	33.0	4.31		1,517.44	0.33
9/25/19 10:28 AM	15		70.47	144.67	1,504.33	7.68	33.0	4.30	pH: 8.07/ EC: 1.34	1,517.47	0.31
9/25/19 10:33 AM	20		70.37	144.85	1,504.15	7.87	33.0	4.19	pH: 8.04/ EC: 1.31	1,517.37	0.41
9/25/19 10:38 AM	25		70.44	144.90	1,504.10	7.91	33.0	4.17	pH: 8.10/ EC: 1.29	1,517.32	0.46
9/25/19 10:43 AM	30		70.45	144.94	1,504.07	7.95	33.0	4.15	pH: 8.10/ EC: 1.27	1,517.27	0.50
9/25/19 10:58 AM	45		70.45	145.12	1,503.88	8.14	33.0	4.05	pH: 8.06/ EC: 1.23	1,517.12	0.66
9/25/19 11:13 AM	60		70.42	145.38	1,503.62	8.39	33.0	3.93	pH: 8.05/ EC: 1.19	1,517.02	0.76
9/25/19 11:28 AM	75		70.45	145.45	1,503.55	8.47	33.0	3.90	pH: 7.85/ EC: 1.18	1,516.95	0.83
9/25/19 11:43 AM	90		70.48	144.54	1,504.46	7.56	33.0	4.37	pH: 7.76/ EC: 1.28	1,516.90	0.88
9/25/19 11:58 AM	105		70.46	144.71	1,504.29	7.72	33.0	4.27	pH: 7.96/ EC: 1.22	1,516.82	0.96
9/25/19 12:13 PM	120		70.43	144.89	1,504.11	7.91	33.0	4.17	pH: 7.96/ EC: 1.20	1,516.79	0.99
9/25/19 12:43 PM	150		70.45	145.14	1,503.86	8.16	33.0	4.04	pH: 7.89/ EC: 1.14	1,516.67	1.11
9/25/19 1:13 PM	180		70.43	145.22	1,503.78	8.23	33.0	4.01	pH: 7.86/ EC: 1.11	1,516.54	1.24
9/25/19 1:43 PM	210		70.42	145.44	1,503.56	8.45				1,516.47	1.31
9/25/19 2:13 PM	240		70.44	145.58	1,503.42	8.60				1,516.40	1.38
9/25/19 3:13 PM	300		70.45	145.73	1,503.27	8.75				1,516.25	1.53
9/25/19 4:13 PM	360		70.49	145.83	1,503.17	8.85				1,516.14	1.64
9/25/19 5:13 PM	420		70.51	146.13	1,502.87	9.15				1,515.95	1.82
9/25/19 6:13 PM	480		70.50	146.25	1,502.75	9.27				1,515.85	1.93
9/25/19 7:13 PM	540		70.51	146.39	1,502.62	9.40				1,515.75	2.03
9/25/19 8:13 PM	600		70.52	146.42	1,502.58	9.43				1,515.65	2.13

Note: bgs = below ground surface Column Pipe Diameter = 2 inches Horsepower = 10 HP

MSL = Mean Sea Level


Pump Setting = 420 ft EC=Electrical conductivity (mS/cm)


Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 6 Temperature (F)	PW Well No. 6 Water Level (ft bgs)	PW Well No. 6 Water Level (ft MSL)	PW Well No. 6 Drawdown (ft)	PW Well No. 6 Pump Rate (gpm)	PW Well No. 6 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/25/19 9:13 PM	660		70.51	146.58	1,502.42	9.60				1,515.58	2.20
9/25/19 10:13 PM	720		70.46	146.70	1,502.30	9.72				1,515.51	2.26
9/25/19 11:13 PM	780		70.52	146.77	1,502.23	9.79				1,515.44	2.34
9/26/19 12:13 AM	840		70.48	146.76	1,502.24	9.78				1,515.36	2.42
9/26/19 1:13 AM	900		70.51	146.80	1,502.20	9.82				1,515.29	2.48
9/26/19 2:13 AM	960		70.48	146.87	1,502.13	9.89				1,515.27	2.51
9/26/19 3:13 AM	1,020		70.54	146.74	1,502.26	9.76				1,515.21	2.57
9/26/19 4:13 AM	1,080		70.47	147.02	1,501.98	10.04				1,515.15	2.63
9/26/19 5:13 AM	1,140		70.51	147.10	1,501.90	10.12				1,515.10	2.67
9/26/19 6:13 AM	1,200		70.55	147.11	1,501.90	10.12				1,515.06	2.72
9/26/19 7:13 AM	1,260		70.51	147.20	1,501.80	10.22				1,514.99	2.79
9/26/19 8:13 AM	1,320		70.54	147.21	1,501.79	10.23				1,514.92	2.85
9/26/19 9:13 AM	1,380		70.52	147.31	1,501.69	10.33				1,514.89	2.89
9/26/19 10:13 AM	1,440		70.49	147.41	1,501.59	10.43				1,514.74	3.03
9/26/19 10:39 AM	1,466	0	70.52	147.48	1,501.52	10.49	33.0	3.15	Pump Stop	1,514.73	2.54
9/26/19 10:40 AM	1,467	1	70.54	141.25	1,507.75	4.26			Meter: 97,331 gallons	1,514.72	2.55
9/26/19 10:41 AM	1,468	2	70.53	140.80	1,508.20	3.82			Avg. Pump Rate: 33.18	1,514.78	2.50
9/26/19 10:42 AM	1,469	3	70.53	140.48	1,508.52	3.49				1,514.76	2.52
9/26/19 10:43 AM	1,470	4	70.53	140.38	1,508.62	3.40				1,514.80	2.47
9/26/19 10:44 AM	1,471	5	70.57	140.45	1,508.55	3.46				1,514.86	2.42
9/26/19 10:45 AM	1,472	6	70.59	140.24	1,508.76	3.25				1,514.86	2.41
9/26/19 10:46 AM	1,473	7	70.59	140.20	1,508.80	3.21				1,514.86	2.42
9/26/19 10:47 AM	1,474	8	70.58	140.13	1,508.87	3.14				1,514.89	2.39
9/26/19 10:48 AM	1,475	9	70.60	140.11	1,508.89	3.12				1,514.94	2.33
9/26/19 10:49 AM	1,476	10	70.60	140.09	1,508.91	3.11				1,514.96	2.32
9/26/19 10:50 AM	1,477	11	70.58	140.11	1,508.89	3.13				1,515.00	2.28
9/26/19 10:51 AM	1,478	12	70.59	140.06	1,508.94	3.08				1,514.98	2.29
9/26/19 10:52 AM	1,479	13	70.63	139.94	1,509.06	2.95				1,514.97	2.30
9/26/19 10:53 AM	1,480	14	70.66	139.96	1,509.04	2.97				1,515.03	2.25
9/26/19 10:54 AM	1,481	15	70.62	139.98	1,509.03	2.99				1,515.03	2.25
9/26/19 10:59 AM	1,486	20	70.62	139.87	1,509.14	2.88				1,515.07	2.21
9/26/19 11:04 AM	1,491	25	70.69	139.89	1,509.11	2.91				1,515.12	2.15
9/26/19 11:09 AM	1,496	30	70.70	139.77	1,509.23	2.79				1,515.17	2.11
9/26/19 11:24 AM	1,511	45	70.75	139.58	1,509.42	2.60				1,515.30	1.97
9/26/19 11:39 AM	1,526	60	70.84	139.60	1,509.40	2.61				1,515.37	1.91

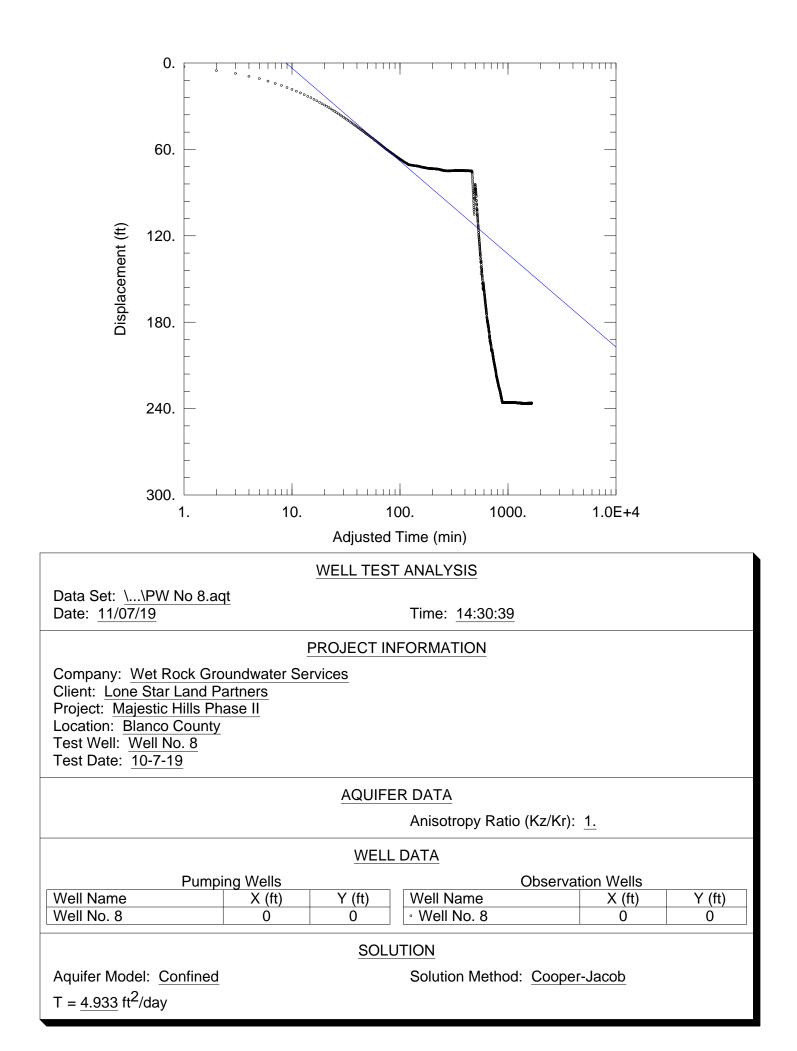
Note: bgs = below ground surface Column Pipe Diameter = 2 inches Horsepower = 10 HP

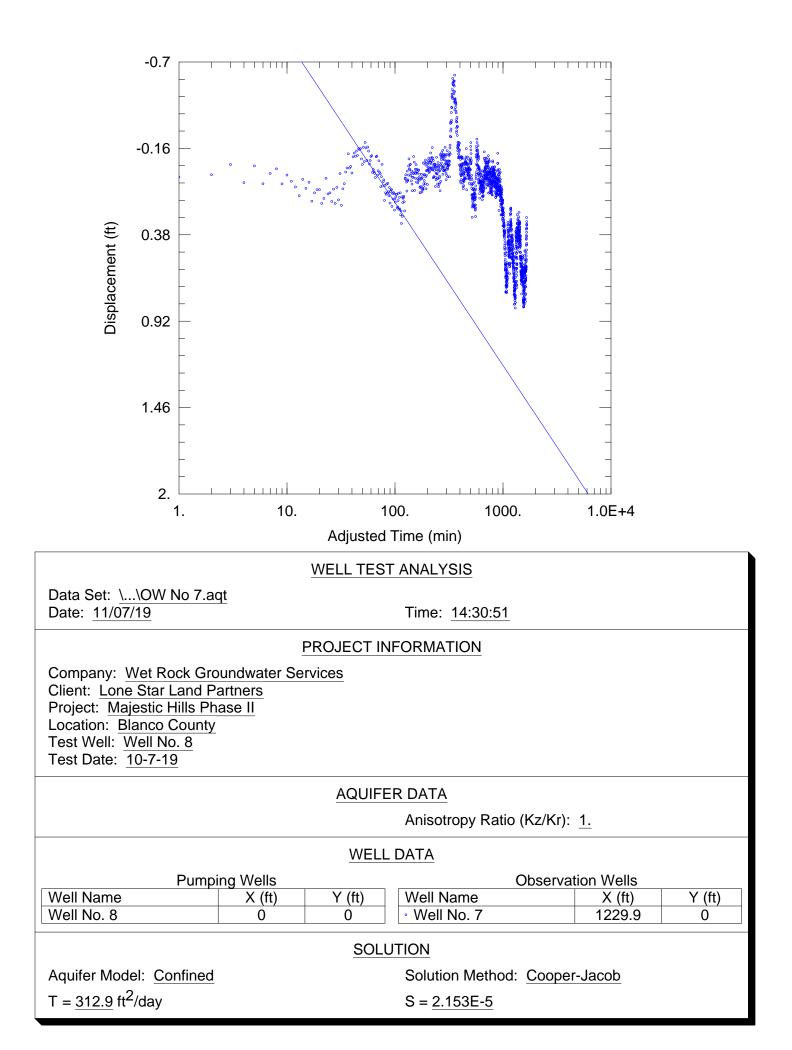
MSL = Mean Sea Level

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 6 Temperature (F)	PW Well No. 6 Water Level (ft bgs)	PW Well No. 6 Water Level (ft MSL)	PW Well No. 6 Drawdown (ft)	PW Well No. 6 Pump Rate (gpm)	PW Well No. 6 Specific Capacity (gpm/ft)	Comments	OW Well No. 5 Water Level (ft MSL)	OW Well No. 5 Drawdown (ft)
9/26/19 11:54 AM	1,541	75	70.88	139.47	1,509.53	2.48				1,515.48	1.79
9/26/19 12:09 PM	1,556	90	70.89	139.34	1,509.66	2.35				1,515.54	1.74
9/26/19 12:24 PM	1,571	105	70.90	139.31	1,509.69	2.33				1,515.58	1.70
9/26/19 12:39 PM	1,586	120	70.92	139.25	1,509.75	2.26				1,515.70	1.58
9/26/19 1:09 PM	1,616	150	70.92	139.05	1,509.95	2.07				1,515.74	1.54
9/26/19 1:39 PM	1,646	180	70.91	138.98	1,510.02	1.99				1,515.84	1.44
9/26/19 2:09 PM	1,676	210	70.86	138.87	1,510.13	1.88				1,515.93	1.35
9/26/19 2:39 PM	1,706	240	70.85	138.83	1,510.17	1.84				1,515.96	1.31
9/26/19 3:39 PM	1,766	300	70.85	138.66	1,510.34	1.67				1,516.06	1.21
9/26/19 4:39 PM	1,826	360	70.88	138.49	1,510.51	1.51				1,516.17	1.11
9/26/19 5:39 PM	1,886	420	70.85	138.35	1,510.65	1.37				1,516.21	1.07
9/26/19 6:39 PM	1,946	480	70.81	138.41	1,510.59	1.43				1,516.32	0.96
9/26/19 7:39 PM	2,006	540	70.80	138.32	1,510.68	1.34				1,516.36	0.91
9/26/19 8:39 PM	2,066	600	70.82	138.21	1,510.79	1.23				1,516.33	0.95
9/26/19 9:39 PM	2,126	660	70.87	138.18	1,510.82	1.19				1,516.40	0.87
9/26/19 10:39 PM	2,186	720	70.87	138.11	1,510.89	1.13				1,516.43	0.85
9/26/19 11:39 PM	2,246	780	70.82	138.17	1,510.83	1.19				1,516.45	0.83
9/27/19 12:39 AM	2,306	840	70.86	138.16	1,510.84	1.17				1,516.47	0.81
9/27/19 1:39 AM	2,366	900	70.85	138.12	1,510.88	1.14				1,516.52	0.75
9/27/19 2:39 AM	2,426	960	70.88	138.04	1,510.96	1.06				1,516.57	0.71
9/27/19 3:39 AM	2,486	1020	70.85	138.11	1,510.90	1.12				1,516.55	0.73
9/27/19 4:39 AM	2,546	1080	70.88	138.02	1,510.98	1.04				1,516.60	0.68
9/27/19 5:39 AM	2,606	1140	70.85	138.05	1,510.95	1.07				1,516.65	0.62
9/27/19 6:39 AM	2,666	1200	70.88	137.99	1,511.01	1.00				1,516.66	0.61
9/27/19 7:39 AM	2,726	1260	70.88	138.04	1,510.96	1.05				1,516.69	0.59
9/27/19 8:39 AM	2,786	1320	70.86	138.03	1,510.97	1.05				1,516.64	0.64

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 8 Temperature (F)	PW Well No. 8 Water Level (ft bgs)	PW Well No. 8 Water Level (ft MSL)	PW Well No. 8 Drawdown (ft)	PW Well No. 8 Pump Rate (gpm)	PW Well No. 8 Specific Capacity (gpm/ft)	Comments	OW Well No. 7 Water Level (ft MSL)	OW Well No. 7 Drawdown (ft)
10/7/19 12:46 PM	0		72.80	343.17	1,487.83	0.00			Pump Start	1,553.26	0.00
10/7/19 12:47 PM	1		72.49	345.73	1,485.27	2.56	14.0	5.48	Meter: 428,528.9 gallons	1,553.24	0.02
10/7/19 12:48 PM	2		72.16	348.46	1,482.54	5.28	13.0	2.46		1,553.25	0.01
10/7/19 12:49 PM	3		71.93	350.47	1,480.53	7.29	13.0	1.78		1,553.31	-0.06
10/7/19 12:50 PM	4		71.78	352.48	1,478.52	9.31	13.0	1.40		1,553.20	0.05
10/7/19 12:51 PM	5		71.67	354.06	1,476.94	10.89	12.5	1.15		1,553.31	-0.05
10/7/19 12:52 PM	6		71.54	355.80	1,475.20	12.63	12.5	0.99		1,553.19	0.06
10/7/19 12:53 PM	7		71.45	357.43	1,473.57	14.25	13.0	0.91		1,553.26	0.00
10/7/19 12:54 PM	8		71.39	358.82	1,472.18	15.65	13.0	0.83		1,553.29	-0.03
10/7/19 12:55 PM	9		71.29	360.24	1,470.76	17.07	12.9	0.76		1,553.19	0.06
10/7/19 12:56 PM	10		71.20	361.58	1,469.42	18.41	13.0	0.71		1,553.25	0.01
10/7/19 12:57 PM	11		71.21	362.82	1,468.18	19.65	13.0	0.66		1,553.21	0.05
10/7/19 12:58 PM	12		71.09	363.97	1,467.03	20.79	12.6	0.61		1,553.17	0.08
10/7/19 12:59 PM	13		71.10	365.20	1,465.80	22.03	12.8	0.58		1,553.12	0.14
10/7/19 1:00 PM	14		71.05	366.44	1,464.56	23.27	12.7	0.55		1,553.22	0.03
10/7/19 1:01 PM	15		71.03	367.32	1,463.68	24.15	12.8	0.53	pH: 7.71/ EC: 0.66	1,553.17	0.09
10/7/19 1:06 PM	20		70.91	372.43	1,458.57	29.25	12.7	0.43	pH: 7.44/ EC: 0.69	1,553.16	0.10
10/7/19 1:11 PM	25		70.89	376.89	1,454.11	33.72	12.7	0.38	pH: 7.38/ EC: 0.70	1,553.14	0.12
10/7/19 1:16 PM	30		70.85	380.90	1,450.10	37.73	12.6	0.33	pH: 7.38/ EC: 0.69	1,553.09	0.16
10/7/19 1:31 PM	45		70.85	390.20	1,440.80	47.03	12.3	0.26	pH: 7.36/ EC: 0.69	1,553.37	-0.12
10/7/19 1:46 PM	60		70.88	397.30	1,433.70	54.13	12.4	0.23	pH: 7.37/ EC: 0.68	1,553.36	-0.11
10/7/19 2:01 PM	75		70.87	403.23	1,427.77	60.05	12.4	0.21	pH: 7.36/ EC: 0.68	1,553.24	0.02
10/7/19 2:16 PM	90		70.86	407.52	1,423.48	64.35	12.3	0.19	pH: 7.36/ EC: 0.68	1,553.07	0.18
10/7/19 2:31 PM	105		70.88	410.95	1,420.05	67.78	12.0	0.18	pH: 7.36/ EC: 0.67	1,553.04	0.21
10/7/19 2:46 PM	120		70.86	413.69	1,417.32	70.51	12.1	0.17	pH: 7.35/ EC: 0.67	1,553.11	0.15
10/7/19 3:16 PM	150		70.90	415.00	1,416.00	71.82	12.1	0.17	pH: 7.43/ EC: 0.67	1,553.26	0.00
10/7/19 3:46 PM	180		70.88	416.28	1,414.72	73.11	12.1	0.17	pH: 7.41/ EC: 0.66	1,553.16	0.10
10/7/19 4:16 PM	210		70.91	416.66	1,414.34	73.48				1,553.27	-0.01
10/7/19 4:46 PM	240		70.83	417.46	1,413.54	74.29				1,553.26	0.00
10/7/19 5:46 PM	300		70.84	418.01	1,412.99	74.84				1,553.32	-0.06
10/7/19 6:46 PM	360		70.85	417.95	1,413.05	74.78				1,553.72	-0.47
10/7/19 7:46 PM	420		70.86	418.07	1,412.93	74.90				1,553.26	0.00
10/7/19 8:46 PM	480		70.87	437.38	1,393.62	94.21				1,553.30	-0.05
10/7/19 9:46 PM	540		70.91	464.61	1,366.39	121.44				1,553.16	0.10
10/7/19 10:46 PM	600		71.01	500.59	1,330.41	157.42				1,553.30	-0.05

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 580 ftEC=Electrical conductivity (mS/cm)


Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 8 Temperature (F)	PW Well No. 8 Water Level (ft bgs)	PW Well No. 8 Water Level (ft MSL)	PW Well No. 8 Drawdown (ft)	PW Well No. 8 Pump Rate (gpm)	PW Well No. 8 Specific Capacity (gpm/ft)	Comments	OW Well No. 7 Water Level (ft MSL)	OW Well No. 7 Drawdown (ft)
10/7/19 11:46 PM	660		71.13	526.10	1,304.91	182.92				1,553.16	0.09
10/8/19 12:46 AM	720		71.02	544.35	1,286.65	201.18				1,553.19	0.07
10/8/19 1:46 AM	780		71.04	560.07	1,270.94	216.89				1,553.21	0.05
10/8/19 2:46 AM	840		71.05	570.40	1,260.60	227.23				1,553.21	0.05
10/8/19 3:46 AM	900		71.06	578.89	1,252.11	235.72				1,553.22	0.03
10/8/19 4:46 AM	960		71.10	579.04	1,251.96	235.87				1,553.11	0.15
10/8/19 5:46 AM	1,020		71.10	578.98	1,252.03	235.80				1,552.91	0.34
10/8/19 6:46 AM	1,080		71.08	579.13	1,251.88	235.95				1,552.58	0.67
10/8/19 7:46 AM	1,140		71.08	579.21	1,251.79	236.04				1,552.84	0.41
10/8/19 8:46 AM	1,200		71.10	579.07	1,251.94	235.89				1,552.83	0.42
10/8/19 9:46 AM	1,260		71.11	579.34	1,251.66	236.17				1,552.63	0.62
10/8/19 10:46 AM	1,320		71.16	579.47	1,251.53	236.30				1,552.86	0.39
10/8/19 11:46 AM	1,380		71.18	579.71	1,251.29	236.54				1,552.90	0.35
10/8/19 12:46 PM	1,440		71.18	579.69	1,251.31	236.52				1,552.83	0.43
10/8/19 1:46 PM	1,500		71.17	579.69	1,251.31	236.51				1,552.59	0.67
10/8/19 2:46 PM	1,560		71.18	579.62	1,251.38	236.45				1,552.47	0.79
10/8/19 3:46 PM	1,620		71.18	579.51	1,251.49	236.34				1,552.51	0.75
10/8/19 4:30 PM	1,664	0	71.20	579.58	1,251.42	236.41	7.2	0.03	Pump Stop	1,552.94	0.32
10/8/19 4:31 PM	1,665	1	71.20	578.11	1,252.89	234.94			Meter: 443,552.878 gallons	1,552.92	0.34
10/8/19 4:32 PM	1,666	2	71.16	572.83	1,258.18	229.65			Avg. Pump Rate: 9.03	1,552.91	0.34
10/8/19 4:33 PM	1,667	3	71.16	567.68	1,263.32	224.51				1,552.99	0.27
10/8/19 4:34 PM	1,668	4	71.14	562.59	1,268.41	219.42				1,552.91	0.35
10/8/19 4:35 PM	1,669	5	71.15	556.66	1,274.34	213.49				1,552.92	0.34
10/8/19 4:36 PM	1,670	6	71.17	551.65	1,279.35	208.48				1,552.91	0.35
10/8/19 4:37 PM	1,671	7	71.15	546.51	1,284.49	203.34				1,552.91	0.35
10/8/19 4:38 PM	1,672	8	71.25	541.41	1,289.59	198.24				1,552.85	0.41
10/8/19 4:39 PM	1,673	9	71.30	535.75	1,295.25	192.58				1,552.96	0.30
10/8/19 4:40 PM	1,674	10	71.43	530.42	1,300.58	187.25				1,552.88	0.38
10/8/19 4:41 PM	1,675	11	71.53	525.36	1,305.64	182.19				1,552.81	0.44
10/8/19 4:42 PM	1,676	12	71.58	520.43	1,310.57	177.26				1,552.94	0.32
10/8/19 4:43 PM	1,677	13	71.60	515.57	1,315.43	172.39				1,552.90	0.36
10/8/19 4:44 PM	1,678	14	71.56	510.76	1,320.24	167.59				1,552.89	0.36
10/8/19 4:45 PM	1,679	15	71.54	505.98	1,325.02	162.81				1,552.95	0.31
10/8/19 4:50 PM	1,684	20	71.49	482.53	1,348.48	139.35				1,552.86	0.39
10/8/19 4:55 PM	1,689	25	71.47	460.01	1,370.99	116.84				1,552.81	0.44


Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 3 HP

MSL = Mean Sea Level

Pump Setting = 580 ft EC=Electrical conductivity (mS/cm)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 8 Temperature (F)	PW Well No. 8 Water Level (ft bgs)	PW Well No. 8 Water Level (ft MSL)	PW Well No. 8 Drawdown (ft)	PW Well No. 8 Pump Rate (gpm)	PW Well No. 8 Specific Capacity (gpm/ft)	Comments	OW Well No. 7 Water Level (ft MSL)	OW Well No. 7 Drawdown (ft)
10/8/19 5:00 PM	1,694	30	71.41	445.39	1,385.61	102.22				1,552.63	0.63
10/8/19 5:15 PM	1,709	45	71.42	418.35	1,412.66	75.17				1,553.16	0.10
10/8/19 5:30 PM	1,724	60	71.37	418.28	1,412.72	75.11				1,553.34	-0.09
10/8/19 5:45 PM	1,739	75	71.32	418.02	1,412.99	74.84				1,553.38	-0.12
10/8/19 6:00 PM	1,754	90	71.22	417.77	1,413.23	74.60				1,553.40	-0.14
10/8/19 6:15 PM	1,769	105	71.22	417.52	1,413.48	74.35				1,553.29	-0.03
10/8/19 6:30 PM	1,784	120	71.25	417.48	1,413.52	74.31				1,553.20	0.05
10/8/19 7:00 PM	1,814	150	71.27	417.40	1,413.60	74.23				1,553.21	0.05
10/8/19 7:30 PM	1,844	180	71.25	417.24	1,413.76	74.06				1,553.06	0.20
10/8/19 8:00 PM	1,874	210	71.28	417.26	1,413.74	74.09				1,552.93	0.32
10/8/19 8:30 PM	1,904	240	71.29	417.24	1,413.76	74.07				1,552.77	0.49
10/8/19 9:30 PM	1,964	300	71.27	417.21	1,413.79	74.04				1,552.98	0.28
10/8/19 10:30 PM	2,024	360	71.32	417.08	1,413.92	73.90				1,552.65	0.60
10/8/19 11:30 PM	2,084	420	71.34	417.02	1,413.98	73.85				1,552.69	0.57
10/9/19 12:30 AM	2,144	480	71.33	416.98	1,414.02	73.80				1,552.57	0.69
10/9/19 1:30 AM	2,204	540	71.29	417.01	1,413.99	73.83				1,552.54	0.72
10/9/19 2:30 AM	2,264	600	71.24	416.85	1,414.15	73.68				1,554.44	-1.18
10/9/19 3:30 AM	2,324	660	71.21	416.58	1,414.42	73.41				1,554.25	-0.99
10/9/19 4:30 AM	2,384	720	71.24	415.66	1,415.34	72.48				1,553.95	-0.69
10/9/19 5:30 AM	2,444	780	71.17	414.59	1,416.41	71.42				1,553.64	-0.38
10/9/19 6:30 AM	2,504	840	71.15	414.09	1,416.91	70.92				1,554.12	-0.87
10/9/19 7:30 AM	2,564	900	71.21	412.86	1,418.14	69.69				1,553.64	-0.38
10/9/19 8:30 AM	2,624	960	71.16	411.71	1,419.29	68.54				1,553.27	-0.02
10/9/19 9:30 AM	2,684	1020	71.19	410.42	1,420.58	67.25				1,553.26	0.00
10/9/19 9:56 AM	2,710	1046	71.20	409.91	1,421.09	66.74				1,553.29	-0.04

Aquifer Test

Well No. 8 (2)

Majestic Hills Well No. 8 - Aquifer Test (October 7, 2019)

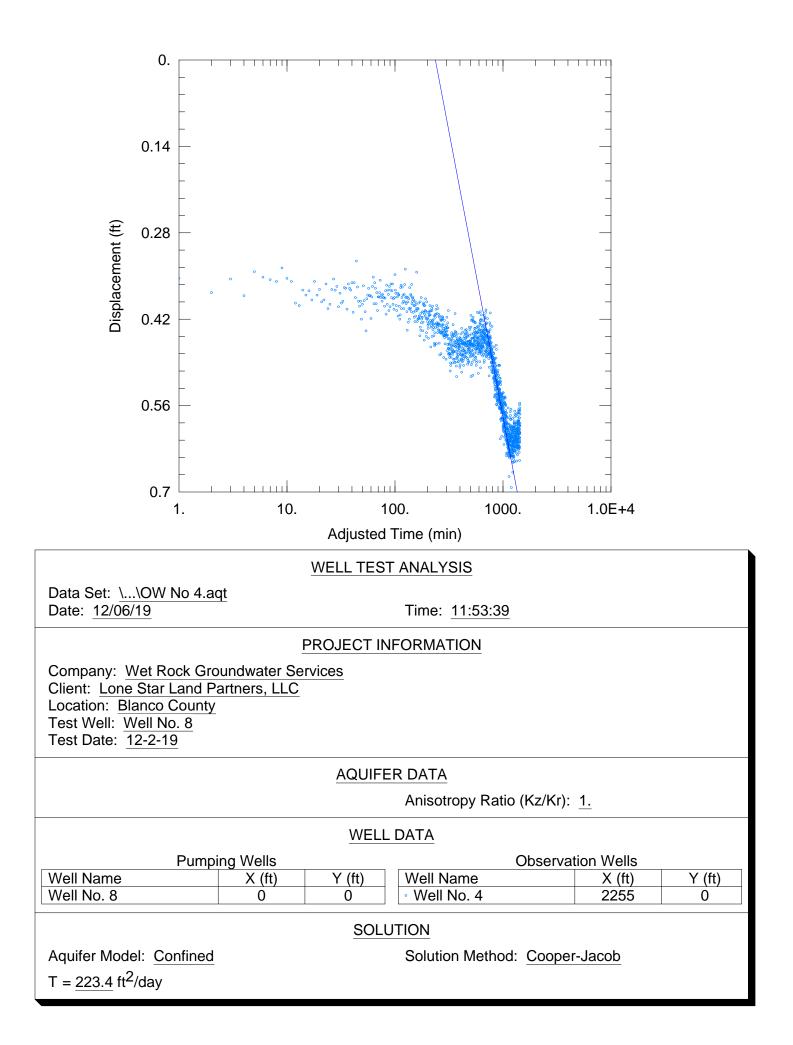
Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 8 Temperature (F)	PW Well No. 8 Water Level (ft bgs)	PW Well No. 8 Water Level (ft MSL)	PW Well No. 8 Drawdown (ft)	PW Well No. 8 Pump Rate (gpm)	PW Well No. 8 Specific Capacity (gpm/ft)	Comments	OW Well No. 7 Water Level (ft MSL)	OW Well No. 7 Drawdown (ft)
10/7/19 12:46 PM	0		72.80	343.17	1,487.83	0.00			Pump Start	1,553.26	0.00
10/7/19 12:47 PM	1		72.49	345.73	1,485.27	2.56	14.0	5.48	Meter: 428,528.9 gallons	1,553.24	0.02
10/7/19 12:48 PM	2		72.16	348.46	1,482.54	5.28	13.0	2.46		1,553.25	0.01
10/7/19 12:49 PM	3		71.93	350.47	1,480.53	7.29	13.0	1.78		1,553.31	-0.06
10/7/19 12:50 PM	4		71.78	352.48	1,478.52	9.31	13.0	1.40		1,553.20	0.05
10/7/19 12:51 PM	5		71.67	354.06	1,476.94	10.89	12.5	1.15		1,553.31	-0.05
10/7/19 12:52 PM	6		71.54	355.80	1,475.20	12.63	12.5	0.99		1,553.19	0.06
10/7/19 12:53 PM	7		71.45	357.43	1,473.57	14.25	13.0	0.91		1,553.26	0.00
10/7/19 12:54 PM	8		71.39	358.82	1,472.18	15.65	13.0	0.83		1,553.29	-0.03
10/7/19 12:55 PM	9		71.29	360.24	1,470.76	17.07	12.9	0.76		1,553.19	0.06
10/7/19 12:56 PM	10		71.20	361.58	1,469.42	18.41	13.0	0.71		1,553.25	0.01
10/7/19 12:57 PM	11		71.21	362.82	1,468.18	19.65	13.0	0.66		1,553.21	0.05
10/7/19 12:58 PM	12		71.09	363.97	1,467.03	20.79	12.6	0.61		1,553.17	0.08
10/7/19 12:59 PM	13		71.10	365.20	1,465.80	22.03	12.8	0.58		1,553.12	0.14
10/7/19 1:00 PM	14		71.05	366.44	1,464.56	23.27	12.7	0.55		1,553.22	0.03
10/7/19 1:01 PM	15		71.03	367.32	1,463.68	24.15	12.8	0.53	pH: 7.71/ EC: 0.66	1,553.17	0.09
10/7/19 1:06 PM	20		70.91	372.43	1,458.57	29.25	12.7	0.43	pH: 7.44/ EC: 0.69	1,553.16	0.10
10/7/19 1:11 PM	25		70.89	376.89	1,454.11	33.72	12.7	0.38	pH: 7.38/ EC: 0.70	1,553.14	0.12
10/7/19 1:16 PM	30		70.85	380.90	1,450.10	37.73	12.6	0.33	pH: 7.38/ EC: 0.69	1,553.09	0.16
10/7/19 1:31 PM	45		70.85	390.20	1,440.80	47.03	12.3	0.26	pH: 7.36/ EC: 0.69	1,553.37	-0.12
10/7/19 1:46 PM	60		70.88	397.30	1,433.70	54.13	12.4	0.23	pH: 7.37/ EC: 0.68	1,553.36	-0.11
10/7/19 2:01 PM	75		70.87	403.23	1,427.77	60.05	12.4	0.21	pH: 7.36/ EC: 0.68	1,553.24	0.02
10/7/19 2:16 PM	90		70.86	407.52	1,423.48	64.35	12.3	0.19	pH: 7.36/ EC: 0.68	1,553.07	0.18
10/7/19 2:31 PM	105		70.88	410.95	1,420.05	67.78	12.0	0.18	pH: 7.36/ EC: 0.67	1,553.04	0.21
10/7/19 2:46 PM	120		70.86	413.69	1,417.32	70.51	12.1	0.17	pH: 7.35/ EC: 0.67	1,553.11	0.15
10/7/19 3:16 PM	150		70.90	415.00	1,416.00	71.82	12.1	0.17	pH: 7.43/ EC: 0.67	1,553.26	0.00
10/7/19 3:46 PM	180		70.88	416.28	1,414.72	73.11	12.1	0.17	pH: 7.41/ EC: 0.66	1,553.16	0.10
10/7/19 4:16 PM	210		70.91	416.66	1,414.34	73.48				1,553.27	-0.01
10/7/19 4:46 PM	240		70.83	417.46	1,413.54	74.29				1,553.26	0.00
10/7/19 5:46 PM	300		70.84	418.01	1,412.99	74.84				1,553.32	-0.06
10/7/19 6:46 PM	360		70.85	417.95	1,413.05	74.78				1,553.72	-0.47
10/7/19 7:46 PM	420		70.86	418.07	1,412.93	74.90				1,553.26	0.00
10/7/19 8:46 PM	480		70.87	437.38	1,393.62	94.21				1,553.30	-0.05
10/7/19 9:46 PM	540		70.91	464.61	1,366.39	121.44				1,553.16	0.10
10/7/19 10:46 PM	600		71.01	500.59	1,330.41	157.42				1,553.30	-0.05

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 580 ftEC=Electrical conductivity (mS/cm)

Majestic Hills Well No. 8 - Aquifer Test (October 7, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 8 Temperature (F)	PW Well No. 8 Water Level (ft bgs)	PW Well No. 8 Water Level (ft MSL)	PW Well No. 8 Drawdown (ft)	PW Well No. 8 Pump Rate (gpm)	PW Well No. 8 Specific Capacity (gpm/ft)	Comments	OW Well No. 7 Water Level (ft MSL)	OW Well No. 7 Drawdown (ft)
10/7/19 11:46 PM	660		71.13	526.10	1,304.91	182.92				1,553.16	0.09
10/8/19 12:46 AM	720		71.02	544.35	1,286.65	201.18				1,553.19	0.07
10/8/19 1:46 AM	780		71.04	560.07	1,270.94	216.89				1,553.21	0.05
10/8/19 2:46 AM	840		71.05	570.40	1,260.60	227.23				1,553.21	0.05
10/8/19 3:46 AM	900		71.06	578.89	1,252.11	235.72				1,553.22	0.03
10/8/19 4:46 AM	960		71.10	579.04	1,251.96	235.87				1,553.11	0.15
10/8/19 5:46 AM	1,020		71.10	578.98	1,252.03	235.80				1,552.91	0.34
10/8/19 6:46 AM	1,080		71.08	579.13	1,251.88	235.95				1,552.58	0.67
10/8/19 7:46 AM	1,140		71.08	579.21	1,251.79	236.04				1,552.84	0.41
10/8/19 8:46 AM	1,200		71.10	579.07	1,251.94	235.89				1,552.83	0.42
10/8/19 9:46 AM	1,260		71.11	579.34	1,251.66	236.17				1,552.63	0.62
10/8/19 10:46 AM	1,320		71.16	579.47	1,251.53	236.30				1,552.86	0.39
10/8/19 11:46 AM	1,380		71.18	579.71	1,251.29	236.54				1,552.90	0.35
10/8/19 12:46 PM	1,440		71.18	579.69	1,251.31	236.52				1,552.83	0.43
10/8/19 1:46 PM	1,500		71.17	579.69	1,251.31	236.51				1,552.59	0.67
10/8/19 2:46 PM	1,560		71.18	579.62	1,251.38	236.45				1,552.47	0.79
10/8/19 3:46 PM	1,620		71.18	579.51	1,251.49	236.34				1,552.51	0.75
10/8/19 4:30 PM	1,664	0	71.20	579.58	1,251.42	236.41	7.2	0.03	Pump Stop	1,552.94	0.32
10/8/19 4:31 PM	1,665	1	71.20	578.11	1,252.89	234.94			Meter: 443,552.878 gallons	1,552.92	0.34
10/8/19 4:32 PM	1,666	2	71.16	572.83	1,258.18	229.65			Avg. Pump Rate: 9.03	1,552.91	0.34
10/8/19 4:33 PM	1,667	3	71.16	567.68	1,263.32	224.51				1,552.99	0.27
10/8/19 4:34 PM	1,668	4	71.14	562.59	1,268.41	219.42				1,552.91	0.35
10/8/19 4:35 PM	1,669	5	71.15	556.66	1,274.34	213.49				1,552.92	0.34
10/8/19 4:36 PM	1,670	6	71.17	551.65	1,279.35	208.48				1,552.91	0.35
10/8/19 4:37 PM	1,671	7	71.15	546.51	1,284.49	203.34				1,552.91	0.35
10/8/19 4:38 PM	1,672	8	71.25	541.41	1,289.59	198.24				1,552.85	0.41
10/8/19 4:39 PM	1,673	9	71.30	535.75	1,295.25	192.58				1,552.96	0.30
10/8/19 4:40 PM	1,674	10	71.43	530.42	1,300.58	187.25				1,552.88	0.38
10/8/19 4:41 PM	1,675	11	71.53	525.36	1,305.64	182.19				1,552.81	0.44
10/8/19 4:42 PM	1,676	12	71.58	520.43	1,310.57	177.26				1,552.94	0.32
10/8/19 4:43 PM	1,677	13	71.60	515.57	1,315.43	172.39				1,552.90	0.36
10/8/19 4:44 PM	1,678	14	71.56	510.76	1,320.24	167.59				1,552.89	0.36
10/8/19 4:45 PM	1,679	15	71.54	505.98	1,325.02	162.81				1,552.95	0.31
10/8/19 4:50 PM	1,684	20	71.49	482.53	1,348.48	139.35				1,552.86	0.39
10/8/19 4:55 PM	1,689	25	71.47	460.01	1,370.99	116.84				1,552.81	0.44

Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 3 HP


MSL = Mean Sea Level

Pump Setting = 580 ft EC=Electrical conductivity (mS/cm)

Majestic Hills Well No. 8 - Aquifer Test (October 7, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 8 Temperature (F)	PW Well No. 8 Water Level (ft bgs)	PW Well No. 8 Water Level (ft MSL)	PW Well No. 8 Drawdown (ft)	PW Well No. 8 Pump Rate (gpm)	PW Well No. 8 Specific Capacity (gpm/ft)	Comments	OW Well No. 7 Water Level (ft MSL)	OW Well No. 7 Drawdown (ft)
10/8/19 5:00 PM	1,694	30	71.41	445.39	1,385.61	102.22				1,552.63	0.63
10/8/19 5:15 PM	1,709	45	71.42	418.35	1,412.66	75.17				1,553.16	0.10
10/8/19 5:30 PM	1,724	60	71.37	418.28	1,412.72	75.11				1,553.34	-0.09
10/8/19 5:45 PM	1,739	75	71.32	418.02	1,412.99	74.84				1,553.38	-0.12
10/8/19 6:00 PM	1,754	90	71.22	417.77	1,413.23	74.60				1,553.40	-0.14
10/8/19 6:15 PM	1,769	105	71.22	417.52	1,413.48	74.35				1,553.29	-0.03
10/8/19 6:30 PM	1,784	120	71.25	417.48	1,413.52	74.31				1,553.20	0.05
10/8/19 7:00 PM	1,814	150	71.27	417.40	1,413.60	74.23				1,553.21	0.05
10/8/19 7:30 PM	1,844	180	71.25	417.24	1,413.76	74.06				1,553.06	0.20
10/8/19 8:00 PM	1,874	210	71.28	417.26	1,413.74	74.09				1,552.93	0.32
10/8/19 8:30 PM	1,904	240	71.29	417.24	1,413.76	74.07				1,552.77	0.49
10/8/19 9:30 PM	1,964	300	71.27	417.21	1,413.79	74.04				1,552.98	0.28
10/8/19 10:30 PM	2,024	360	71.32	417.08	1,413.92	73.90				1,552.65	0.60
10/8/19 11:30 PM	2,084	420	71.34	417.02	1,413.98	73.85				1,552.69	0.57
10/9/19 12:30 AM	2,144	480	71.33	416.98	1,414.02	73.80				1,552.57	0.69
10/9/19 1:30 AM	2,204	540	71.29	417.01	1,413.99	73.83				1,552.54	0.72
10/9/19 2:30 AM	2,264	600	71.24	416.85	1,414.15	73.68				1,554.44	-1.18
10/9/19 3:30 AM	2,324	660	71.21	416.58	1,414.42	73.41				1,554.25	-0.99
10/9/19 4:30 AM	2,384	720	71.24	415.66	1,415.34	72.48				1,553.95	-0.69
10/9/19 5:30 AM	2,444	780	71.17	414.59	1,416.41	71.42				1,553.64	-0.38
10/9/19 6:30 AM	2,504	840	71.15	414.09	1,416.91	70.92				1,554.12	-0.87
10/9/19 7:30 AM	2,564	900	71.21	412.86	1,418.14	69.69				1,553.64	-0.38
10/9/19 8:30 AM	2,624	960	71.16	411.71	1,419.29	68.54				1,553.27	-0.02
10/9/19 9:30 AM	2,684	1020	71.19	410.42	1,420.58	67.25				1,553.26	0.00
10/9/19 9:56 AM	2,710	1046	71.20	409.91	1,421.09	66.74				1,553.29	-0.04

Aquifer Test

Majestic Hills Well No. 9 - Aquifer Test (September 18, 2019)

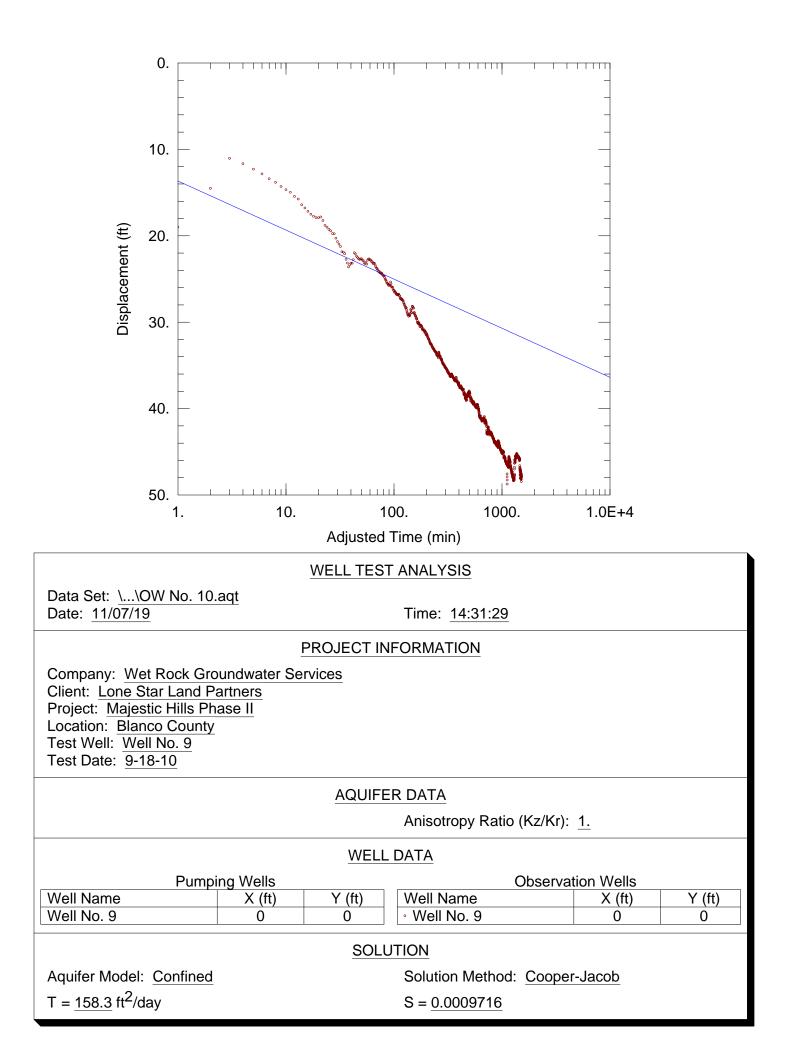
Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 9 Temperature (F)	PW Well No. 9 Water Level (ft bgs)	PW Well No. 9 Water Level (ft MSL)	PW Well No. 9 Drawdown (ft)	PW Well No. 9 Pump Rate (gpm)	PW Well No. 9 Specific Capacity (gpm/ft)	Comments	OW Well No. 10 Water Level (ft MSL)	OW Well No. 10 Drawdown (ft)
9/18/19 11:02 AM	0		72.97	282.96	1,431.04	0.00			Pump Start	1,430.64	0.00
9/18/19 11:03 AM	1		72.27	301.97	1,412.03	19.01			Meter: 359,883.946 gallons	1,430.73	-0.09
9/18/19 11:04 AM	2		71.64	297.47	1,416.53	14.51	24.0	1.65		1,430.68	-0.04
9/18/19 11:05 AM	3		71.25	294.00	1,420.00	11.05				1,430.69	-0.05
9/18/19 11:06 AM	4		70.97	294.62	1,419.38	11.66				1,430.73	-0.09
9/18/19 11:07 AM	5		70.76	295.25	1,418.75	12.29				1,430.78	-0.14
9/18/19 11:08 AM	6		70.61	295.80	1,418.20	12.84	24.0	1.87		1,430.73	-0.09
9/18/19 11:09 AM	7		70.49	296.36	1,417.64	13.40				1,430.69	-0.05
9/18/19 11:10 AM	8		70.41	296.78	1,417.22	13.82			pH: 7.6/ EC: 0.90	1,430.71	-0.07
9/18/19 11:11 AM	9		70.36	297.26	1,416.74	14.30				1,430.72	-0.08
9/18/19 11:12 AM	10		70.32	297.63	1,416.38	14.67				1,430.66	-0.02
9/18/19 11:13 AM	11		70.29	297.92	1,416.08	14.96				1,430.65	-0.01
9/18/19 11:14 AM	12		70.26	298.41	1,415.59	15.45				1,430.73	-0.09
9/18/19 11:15 AM	13		70.19	298.71	1,415.29	15.75				1,430.71	-0.07
9/18/19 11:16 AM	14		70.16	299.38	1,414.62	16.42				1,430.62	0.02
9/18/19 11:17 AM	15		70.14	299.75	1,414.25	16.80	26.5	1.58		1,430.68	-0.04
9/18/19 11:22 AM	20		70.24	300.88	1,413.12	17.92				1,430.65	-0.01
9/18/19 11:27 AM	25		70.19	302.22	1,411.78	19.27				1,430.60	0.04
9/18/19 11:32 AM	30		70.19	303.64	1,410.36	20.68				1,430.56	0.07
9/18/19 11:47 AM	45		70.18	305.33	1,408.67	22.37				1,430.30	0.34
9/18/19 12:02 PM	60		70.23	305.76	1,408.24	22.80				1,430.15	0.49
9/18/19 12:17 PM	75		70.30	307.24	1,406.76	24.28	26.0	1.07	pH: 7.4/ EC: 0.95	1,429.97	0.67
9/18/19 12:32 PM	90		70.33	308.65	1,405.35	25.69				1,429.69	0.95
9/18/19 12:47 PM	105		70.32	309.72	1,404.28	26.76				1,429.53	1.11
9/18/19 1:02 PM	120		70.35	310.38	1,403.62	27.43				1,429.38	1.26
9/18/19 1:32 PM	150		70.42	311.20	1,402.80	28.24				1,428.80	1.83
9/18/19 2:02 PM	180		70.43	313.55	1,400.45	30.60				1,428.46	2.18
9/18/19 2:32 PM	210		70.45	314.91	1,399.09	31.95				1,427.96	2.68
9/18/19 3:02 PM	240		70.45	316.35	1,397.66	33.39				1,427.60	3.04
9/18/19 4:02 PM	300		70.48	318.26	1,395.74	35.30				1,426.95	3.69
9/18/19 5:02 PM	360		70.52	319.65	1,394.35	36.69				1,426.17	4.47
9/18/19 6:02 PM	420		70.52	320.47	1,393.53	37.51				1,425.61	5.03
9/18/19 7:02 PM	480		70.50	321.53	1,392.47	38.57				1,425.18	5.46
9/18/19 8:02 PM	540		70.51	322.38	1,391.63	39.42				1,424.74	5.90
9/18/19 9:02 PM	600		70.53	322.74	1,391.26	39.78				1,424.48	6.16

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 5 HPMSL = Mean Sea LevelPump Setting = 520 ftEC=Electrical conductivity (mS/cm)

Majestic Hills Well No. 9 - Aquifer Test (September 18, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 9 Temperature (F)	PW Well No. 9 Water Level (ft bgs)	PW Well No. 9 Water Level (ft MSL)	PW Well No. 9 Drawdown (ft)	PW Well No. 9 Pump Rate (gpm)	PW Well No. 9 Specific Capacity (gpm/ft)	Comments	OW Well No. 10 Water Level (ft MSL)	OW Well No. 10 Drawdown (ft)
9/18/19 10:02 PM	660		70.53	324.26	1,389.74	41.30				1,424.05	6.59
9/18/19 11:02 PM	720		70.50	324.99	1,389.01	42.03				1,423.67	6.97
9/19/19 12:02 AM	780		70.52	325.87	1,388.13	42.91				1,423.41	7.23
9/19/19 1:02 AM	840		70.52	326.58	1,387.42	43.63				1,423.05	7.59
9/19/19 2:02 AM	900		70.52	327.13	1,386.87	44.18				1,422.77	7.87
9/19/19 3:02 AM	960		70.52	327.61	1,386.40	44.65				1,422.66	7.97
9/19/19 4:02 AM	1,020		70.55	328.07	1,385.93	45.11				1,422.39	8.25
9/19/19 5:02 AM	1,080		70.51	329.11	1,384.89	46.15				1,422.13	8.51
9/19/19 6:02 AM	1,140		70.53	329.59	1,384.41	46.63				1,421.95	8.69
9/19/19 7:02 AM	1,200		70.52	329.70	1,384.30	46.74				1,421.80	8.83
9/19/19 8:02 AM	1,260		70.52	330.93	1,383.08	47.97				1,421.74	8.90
9/19/19 9:02 AM	1,320		70.51	328.96	1,385.04	46.00				1,421.56	9.08
9/19/19 10:02 AM	1,380		70.50	328.38	1,385.62	45.42				1,421.41	9.22
9/19/19 11:02 AM	1,440		70.57	328.72	1,385.28	45.77				1,421.24	9.39
9/19/19 12:02 PM	1,500		70.50	330.92	1,383.08	47.97				1,421.08	9.56
9/19/19 12:23 PM	1,521	0	70.52	330.91	1,383.09	47.95	25.0	0.52	Pump Stop	1,421.00	9.64
9/19/19 12:24 PM	1,522	1	70.50	317.29	1,396.71	34.33			Meter: 398,656.368 gallons	1,421.00	9.64
9/19/19 12:25 PM	1,523	2	70.46	314.32	1,399.68	31.36			Avg. Pump Rate: 25.49	1,421.09	9.54
9/19/19 12:26 PM	1,524	3	70.42	313.40	1,400.60	30.44				1,421.01	9.62
9/19/19 12:27 PM	1,525	4	70.39	312.76	1,401.24	29.80				1,421.11	9.53
9/19/19 12:28 PM	1,526	5	70.37	312.36	1,401.64	29.40				1,421.06	9.58
9/19/19 12:29 PM	1,527	6	70.36	312.00	1,402.00	29.04				1,421.03	9.61
9/19/19 12:30 PM	1,528	7	70.34	311.61	1,402.39	28.65				1,421.00	9.64
9/19/19 12:31 PM	1,529	8	70.34	311.31	1,402.69	28.35				1,421.03	9.61
9/19/19 12:32 PM	1,530	9	70.34	311.01	1,402.99	28.05				1,421.06	9.58
9/19/19 12:33 PM	1,531	10	70.34	310.78	1,403.22	27.83				1,421.03	9.61
9/19/19 12:34 PM	1,532	11	70.33	310.57	1,403.43	27.62				1,420.98	9.66
9/19/19 12:35 PM	1,533	12	70.33	310.34	1,403.66	27.39				1,420.99	9.65
9/19/19 12:36 PM	1,534	13	70.32	310.11	1,403.89	27.15				1,421.07	9.57
9/19/19 12:37 PM	1,535	14	70.32	309.89	1,404.11	26.93				1,420.98	9.66
9/19/19 12:38 PM	1,536	15	70.31	309.71	1,404.29	26.75				1,421.06	9.57
9/19/19 12:43 PM	1,541	20	70.30	308.66	1,405.34	25.71				1,421.00	9.64
9/19/19 12:48 PM	1,546	25	70.29	307.77	1,406.23	24.82				1,421.06	9.58
9/19/19 12:53 PM	1,551	30	70.28	307.01	1,406.99	24.05				1,421.08	9.56
9/19/19 1:08 PM	1,566	45	70.24	304.86	1,409.14	21.91				1,421.14	9.50


Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 5 HP


MSL = Mean Sea Level

Pump Setting = 520 ft EC=Electrical conductivity (mS/cm)

Majestic Hills Well No. 9 - Aquifer Test (September 18, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 9 Temperature (F)	PW Well No. 9 Water Level (ft bgs)	PW Well No. 9 Water Level (ft MSL)	PW Well No. 9 Drawdown (ft)	PW Well No. 9 Pump Rate (gpm)	PW Well No. 9 Specific Capacity (gpm/ft)	Comments	OW Well No. 10 Water Level (ft MSL)	OW Well No. 10 Drawdown (ft)
9/19/19 1:23 PM	1,581	60	70.23	303.16	1,410.84	20.20				1,421.38	9.26
9/19/19 1:38 PM	1,596	75	70.21	301.78	1,412.22	18.82				1,421.54	9.10
9/19/19 1:53 PM	1,611	90	70.21	300.64	1,413.36	17.68				1,421.68	8.96
9/19/19 2:08 PM	1,626	105	70.21	299.61	1,414.39	16.65				1,421.83	8.81
9/19/19 2:23 PM	1,641	120	70.22	298.72	1,415.28	15.76				1,422.12	8.52
9/19/19 2:53 PM	1,671	150	70.24	297.31	1,416.70	14.35				1,422.52	8.12
9/19/19 3:23 PM	1,701	180	70.25	296.16	1,417.84	13.21				1,422.89	7.75
9/19/19 3:53 PM	1,731	210	70.26	295.18	1,418.82	12.22				1,423.23	7.41
9/19/19 4:23 PM	1,761	240	70.27	294.33	1,419.67	11.37				1,423.67	6.97
9/19/19 5:23 PM	1,821	300	70.27	293.00	1,421.00	10.05				1,424.32	6.32
9/19/19 6:23 PM	1,881	360	70.27	291.86	1,422.15	8.90				1,424.93	5.71
9/19/19 7:23 PM	1,941	420	70.28	290.89	1,423.11	7.94				1,425.33	5.31
9/19/19 8:23 PM	2,001	480	70.28	290.11	1,423.89	7.15				1,425.85	4.79
9/19/19 9:23 PM	2,061	540	70.27	289.36	1,424.64	6.40				1,426.28	4.36
9/19/19 10:23 PM	2,121	600	70.28	288.74	1,425.26	5.78				1,426.66	3.98
9/19/19 11:23 PM	2,181	660	70.28	288.23	1,425.77	5.27				1,426.89	3.75
9/20/19 12:23 AM	2,241	720	70.29	287.72	1,426.28	4.76				1,427.31	3.33
9/20/19 1:23 AM	2,301	780	70.27	287.31	1,426.69	4.35				1,427.49	3.15
9/20/19 2:23 AM	2,361	840	70.27	286.93	1,427.07	3.97				1,427.70	2.94
9/20/19 3:23 AM	2,421	900	70.27	286.55	1,427.45	3.59				1,427.85	2.79
9/20/19 4:23 AM	2,481	960	70.27	286.20	1,427.80	3.25				1,428.09	2.55
9/20/19 5:23 AM	2,541	1020	70.28	285.92	1,428.08	2.96				1,428.28	2.36
9/20/19 6:23 AM	2,601	1080	70.28	285.64	1,428.36	2.68				1,428.42	2.22
9/20/19 7:23 AM	2,661	1140	70.28	285.37	1,428.63	2.42				1,428.60	2.04
9/20/19 8:23 AM	2,721	1200	70.28	285.22	1,428.79	2.26				1,428.69	1.95
9/20/19 9:23 AM	2,781	1260	70.28	284.92	1,429.08	1.96				1,428.79	1.85
9/20/19 10:23 AM	2,841	1320	70.27	284.76	1,429.24	1.81				1,428.98	1.66
9/20/19 10:27 AM	2,845	1324	70.27	284.71	1,429.29	1.75				1,429.01	1.63

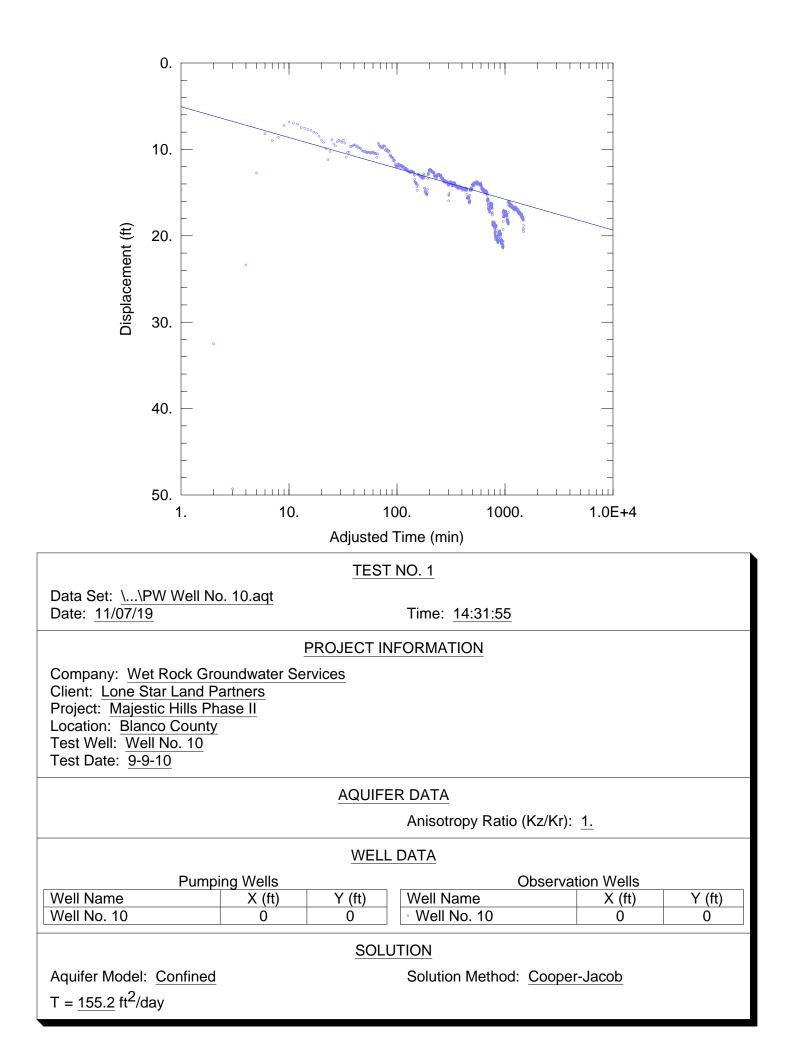
Aquifer Test

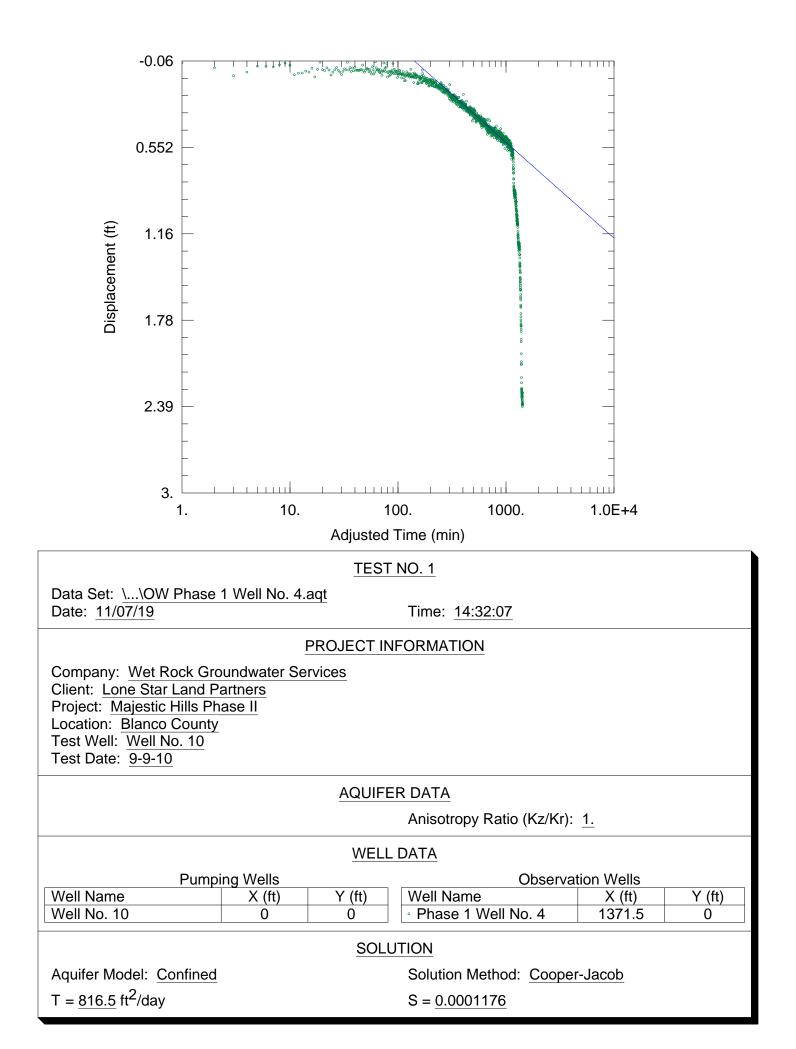
Majestic Hills Phase II Well No. 10 - Aquifer Test (Septmeber 9, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 10 Temperature (F)	PW Well No. 10 Water Level (ft bgs)	PW Well No. 10 Water Level (ft MSL)	PW Well No. 10 Drawdown (ft)	PW Well No. 10 Pump Rate (gpm)	PW Well No. 10 Specific Capacity (gpm/ft)	Comments	OW Phase 1 Well No. 4 Water Level (ft MSL)	OW Phase 1 Well No. 4 Drawdown (ft)
9/9/19 10:40 AM	0		70.20	191.08	1,423.92	0.00			Pump Start	1,428.34	0.00
9/9/19 10:41 AM	1		70.22	205.78	1,409.22	14.70			Meter: 334,808.416 gallons	1,428.39	-0.05
9/9/19 10:42 AM	2		70.18	223.61	1,391.39	32.53	16.0	0.49		1,428.35	-0.01
9/9/19 10:43 AM	3		70.23	240.38	1,374.63	49.29				1,428.30	0.04
9/9/19 10:44 AM	4		70.21	214.47	1,400.53	23.39	16.0	0.68		1,428.32	0.02
9/9/19 10:45 AM	5		70.18	203.80	1,411.20	12.72				1,428.36	-0.02
9/9/19 10:46 AM	6		70.14	199.28	1,415.72	8.20				1,428.36	-0.02
9/9/19 10:47 AM	7		70.11	200.06	1,414.94	8.98				1,428.36	-0.02
9/9/19 10:48 AM	8		70.06	199.69	1,415.31	8.61	16.5	1.92	pH: 7.64/ EC: 0.96	1,428.37	-0.03
9/9/19 10:49 AM	9		70.09	198.33	1,416.67	7.25				1,428.39	-0.04
9/9/19 10:50 AM	10		70.03	197.94	1,417.06	6.86				1,428.37	-0.03
9/9/19 10:51 AM	11		69.98	198.04	1,416.96	6.96				1,428.30	0.04
9/9/19 10:52 AM	12		69.96	198.17	1,416.83	7.09				1,428.31	0.03
9/9/19 10:53 AM	13		69.96	198.55	1,416.45	7.47				1,428.32	0.02
9/9/19 10:54 AM	14		69.86	198.65	1,416.36	7.56				1,428.33	0.01
9/9/19 10:55 AM	15		69.88	198.79	1,416.21	7.71				1,428.32	0.02
9/9/19 11:00 AM	20		69.80	200.02	1,414.98	8.94	16.0	1.79		1,428.34	0.00
9/9/19 11:05 AM	25		69.75	200.00	1,415.00	8.92				1,428.32	0.02
9/9/19 11:10 AM	30		69.72	200.11	1,414.89	9.03				1,428.31	0.04
9/9/19 11:25 AM	45		69.67	200.90	1,414.10	9.82				1,428.34	0.00
9/9/19 11:40 AM	60		69.69	201.37	1,413.63	10.29				1,428.31	0.03
9/9/19 11:55 AM	75		69.70	200.64	1,414.36	9.56				1,428.34	0.00
9/9/19 12:10 PM	90		69.68	202.00	1,413.00	10.92	16.0	1.47	pH: 7.24/ EC: 0.98	1,428.38	-0.04
9/9/19 12:25 PM	105		69.72	202.85	1,412.15	11.77				1,428.31	0.03
9/9/19 12:40 PM	120		69.71	203.24	1,411.76	12.16				1,428.30	0.04
9/9/19 1:10 PM	150		69.67	204.94	1,410.06	13.86				1,428.30	0.04
9/9/19 1:40 PM	180		69.68	205.56	1,409.44	14.48				1,428.27	0.07
9/9/19 2:10 PM	210		69.65	203.68	1,411.32	12.60				1,428.23	0.12
9/9/19 2:40 PM	240		69.67	204.01	1,410.99	12.93				1,428.22	0.12
9/9/19 3:40 PM	300		69.64	205.26	1,409.74	14.18				1,428.18	0.16
9/9/19 4:40 PM	360		69.70	205.52	1,409.49	14.43				1,428.11	0.23
9/9/19 5:40 PM	420		69.70	205.61	1,409.39	14.53				1,428.07	0.28
9/9/19 6:40 PM	480		69.65	205.76	1,409.24	14.68				1,428.07	0.28
9/9/19 7:40 PM	540		69.71	204.84	1,410.16	13.76				1,428.01	0.33
9/9/19 8:40 PM	600		69.66	205.26	1,409.74	14.18				1,428.00	0.34

Note: bgs = below ground surfaceColumn Pipe Diameter = 1 1/4 inchesHorsepower = 3 HPMSL = Mean Sea LevelPump Setting = 460 ftEC=Electrical conductivity (mS/cm)

Majestic Hills Phase II Well No. 10 - Aquifer Test (Septmeber 9, 2019)


Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 10 Temperature (F)	PW Well No. 10 Water Level (ft bgs)	PW Well No. 10 Water Level (ft MSL)	PW Well No. 10 Drawdown (ft)	PW Well No. 10 Pump Rate (gpm)	PW Well No. 10 Specific Capacity (gpm/ft)	Comments	OW Phase 1 Well No. 4 Water Level (ft MSL)	OW Phase 1 Well No. 4 Drawdown (ft)
9/9/19 9:40 PM	660		69.67	206.12	1,408.88	15.04				1,427.93	0.41
9/9/19 10:40 PM	720		69.66	208.30	1,406.71	17.21				1,427.91	0.43
9/9/19 11:40 PM	780		69.68	209.69	1,405.32	18.60				1,427.91	0.43
9/10/19 12:40 AM	840		69.68	211.13	1,403.87	20.05				1,427.91	0.43
9/10/19 1:40 AM	900		69.68	210.80	1,404.20	19.72				1,427.87	0.47
9/10/19 2:40 AM	960		69.71	212.47	1,402.53	21.39				1,427.87	0.48
9/10/19 3:40 AM	1,020		69.70	208.25	1,406.75	17.17				1,427.84	0.50
9/10/19 4:40 AM	1,080		69.69	207.16	1,407.84	16.08				1,427.79	0.56
9/10/19 5:40 AM	1,140		69.73	207.46	1,407.54	16.38				1,427.75	0.59
9/10/19 6:40 AM	1,200		69.67	207.91	1,407.09	16.83				1,427.43	0.91
9/10/19 7:40 AM	1,260		69.73	207.88	1,407.12	16.80				1,427.29	1.05
9/10/19 8:40 AM	1,320		69.71	208.09	1,406.91	17.01				1,427.09	1.25
9/10/19 9:40 AM	1,380		69.69	208.47	1,406.53	17.39				1,426.53	1.81
9/10/19 10:40 AM	1,440		69.68	208.79	1,406.21	17.71				1,426.36	1.98
9/10/19 11:26 AM	1,486	0	69.70	210.61	1,404.39	19.53	16.0	0.82	Pump Stop	1,426.67	1.67
9/10/19 11:27 AM	1,487	1	69.71	201.07	1,413.93	9.99			Meter: 358,160.192 gallons	1,426.69	1.65
9/10/19 11:28 AM	1,488	2	69.64	197.13	1,417.87	6.05			Avg. Pump Rate: 15.71	1,426.67	1.67
9/10/19 11:29 AM	1,489	3	69.68	196.10	1,418.90	5.02				1,426.71	1.63
9/10/19 11:30 AM	1,490	4	69.73	195.42	1,419.58	4.34				1,426.70	1.64
9/10/19 11:31 AM	1,491	5	69.75	195.02	1,419.98	3.94				1,426.69	1.65
9/10/19 11:32 AM	1,492	6	69.74	194.57	1,420.43	3.49				1,426.66	1.68
9/10/19 11:33 AM	1,493	7	69.75	194.27	1,420.73	3.19				1,426.66	1.68
9/10/19 11:34 AM	1,494	8	69.75	193.87	1,421.13	2.79				1,426.70	1.65
9/10/19 11:35 AM	1,495	9	69.77	193.77	1,421.23	2.69				1,426.67	1.67
9/10/19 11:36 AM	1,496	10	69.75	193.42	1,421.58	2.34				1,426.70	1.65
9/10/19 11:37 AM	1,497	11	69.76	193.19	1,421.81	2.11				1,426.66	1.68
9/10/19 11:38 AM	1,498	12	69.72	193.03	1,421.97	1.95				1,426.67	1.67
9/10/19 11:39 AM	1,499	13	69.74	192.92	1,422.08	1.84				1,426.68	1.66
9/10/19 11:40 AM	1,500	14	69.74	192.65	1,422.35	1.57				1,426.67	1.67
9/10/19 11:41 AM	1,501	15	69.76	192.53	1,422.47	1.45				1,426.69	1.65
9/10/19 11:46 AM	1,506	20	69.83	192.07	1,422.93	0.99				1,426.70	1.64
9/10/19 11:51 AM	1,511	25	69.82	191.68	1,423.32	0.60				1,426.69	1.65
9/10/19 11:56 AM	1,516	30	69.82	191.42	1,423.58	0.34				1,426.69	1.65
9/10/19 12:11 PM	1,531	45	69.82	190.64	1,424.36	-0.44				1,426.67	1.67
9/10/19 12:26 PM	1,546	60	69.83	190.00	1,425.01	-1.09				1,426.67	1.67


Note: bgs = below ground surface Column Pipe Diameter = 1 1/4 inches Horsepower = 3 HP

MSL = Mean Sea Level

Majestic Hills Phase II Well No. 10 - Aquifer Test (Septmeber 9, 2019)

Date and Time	Time Since Pump Start (min)	Time Since Pump Stop (min)	PW Well No. 10 Temperature (F)	PW Well No. 10 Water Level (ft bgs)	PW Well No. 10 Water Level (ft MSL)	PW Well No. 10 Drawdown (ft)	PW Well No. 10 Pump Rate (gpm)	PW Well No. 10 Specific Capacity (gpm/ft)	Comments	OW Phase 1 Well No. 4 Water Level (ft MSL)	OW Phase 1 Well No. 4 Drawdown (ft)
9/10/19 12:41 PM	1,561	75	69.88	189.76	1,425.24	-1.32				1,426.72	1.63
9/10/19 12:56 PM	1,576	90	69.90	189.23	1,425.77	-1.85				1,426.73	1.61
9/10/19 1:11 PM	1,591	105	69.91	189.03	1,425.97	-2.05				1,426.84	1.50
9/10/19 1:26 PM	1,606	120	69.96	188.58	1,426.43	-2.51				1,426.78	1.56
9/10/19 1:56 PM	1,636	150	69.97	188.05	1,426.95	-3.03				1,426.76	1.58
9/10/19 2:26 PM	1,666	180	70.00	187.69	1,427.31	-3.39				1,426.82	1.52
9/10/19 2:56 PM	1,696	210	70.04	187.43	1,427.57	-3.65				1,426.80	1.54
9/10/19 3:26 PM	1,726	240	70.08	187.14	1,427.86	-3.94				1,426.87	1.47
9/10/19 4:26 PM	1,786	300	70.05	185.82	1,429.18	-5.26				1,426.90	1.44
9/10/19 5:26 PM	1,846	360	70.05	185.75	1,429.25	-5.33				1,426.94	1.40
9/10/19 6:26 PM	1,906	420	70.09	185.75	1,429.25	-5.33				1,426.98	1.36
9/10/19 7:26 PM	1,966	480	70.08	185.12	1,429.89	-5.97				1,426.99	1.35
9/10/19 8:26 PM	2,026	540	70.09	184.60	1,430.40	-6.48				1,427.02	1.32
9/10/19 9:26 PM	2,086	600	70.08	184.41	1,430.59	-6.67				1,427.04	1.31
9/10/19 10:26 PM	2,146	660	70.07	184.17	1,430.83	-6.91				1,427.05	1.29
9/10/19 11:26 PM	2,206	720	70.11	183.97	1,431.03	-7.11				1,427.03	1.31
9/11/19 12:26 AM	2,266	780	70.13	183.99	1,431.01	-7.09				1,427.08	1.26
9/11/19 1:26 AM	2,326	840	70.06	183.93	1,431.07	-7.16				1,427.06	1.28
9/11/19 2:26 AM	2,386	900	70.07	183.95	1,431.05	-7.13				1,427.06	1.28
9/11/19 3:26 AM	2,446	960	70.09	183.90	1,431.10	-7.18				1,427.05	1.29
9/11/19 4:26 AM	2,506	1020	70.10	183.85	1,431.15	-7.23				1,427.08	1.26
9/11/19 5:26 AM	2,566	1080	70.06	183.73	1,431.28	-7.36				1,427.06	1.28
9/11/19 6:26 AM	2,626	1140	70.06	183.69	1,431.32	-7.40				1,427.09	1.25
9/11/19 7:26 AM	2,686	1200	70.09	183.74	1,431.26	-7.34				1,427.09	1.25
9/11/19 8:26 AM	2,746	1260	70.06	183.77	1,431.24	-7.32				1,427.13	1.21
9/11/19 9:24 AM	2,804	1318	70.10	183.95	1,431.05	-7.13				1,427.04	1.30

Appendix E

Well Efficiency Calculation

Well Efficiency Calculations Well No. 1

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 9 gpm / 183.84 ft. = 0.05 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 7.2 X 10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity: $\frac{6.7}{264 \log \frac{(0.3)(6.7)(1.05)}{(0.1875)^2 (0.000072)}} = 0.03$

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.05 / 0.03 = 117%

Well Efficiency Calculations Well No. 3

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 6.1 gpm / 281.78 ft. = 0.02 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 4.5×10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity:
$$\frac{6.7}{264 \log \frac{(0.3)(6.7)(1.0)}{(0.1875)^2 (0.000045)}} = 0.03$$

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.02 / 0.03 = 67%

Well Efficiency Calculations Well No. 4

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 4 gpm / 128.2 ft. = 0.03 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 5.22×10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity:	6.306	= 0.03
	$264\log \frac{(0.3)(6.306)(1.04)}{(0.3)(6.306)(1.04)}$	
	$\frac{264 \log (0.1875)^2 (0.0000522)}{(0.1875)^2 (0.0000522)}$	

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.03 / 0.03 = 100%

Well Efficiency Calculations Well No. 6

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 33 gpm / 10.49 ft. = 3.15 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 3.78×10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity:	492.2	= 1.56
	(0.3)(492.2)(1.02)	
	$\frac{264\log((0.1875)^2 (0.0000378))}{(0.1875)^2 (0.0000378)}$	

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 3.15 / 1.56 = 202%

Well Efficiency Calculations Well No. 8

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 9 gpm / 236.41 ft. = 0.03 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 2.15×10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity:	4.933	= 0.02
	(0.3)(4.933)(1.16)	
	$\frac{264 \log (0.1875)^2 (0.0000215)}{(0.1875)^2 (0.0000215)}$	

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.03 / 0.02 = 150%

Well No. 8 (2)

Well Efficiency Calculations Well No. 8 (2)

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 5.9 gpm / 67.16 ft. = 0.09 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 5.22×10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity:	21.23	= 0.08
	2641aa = (0.3)(21.23)(1.00)	
	$\frac{264 \log (0.1875)^2 (0.0000522)}{(0.1875)^2 (0.0000522)}$	

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.09 / 0.08 = 112%

Well Efficiency Calculations Well No. 9

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 25 gpm / 47.95 ft. = 0.52 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 1.7×10^{-5} r = radius of well, in ft.

Theoretical Specific Capacity:	158.3	= 0.96
	(0.3)(158)	.3)(1.06)
	$264\log(0.1875)^2$	0.000017)

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.52 / 0.96 = 54%

Well Efficiency Calculations Well No. 10

From: Driscoll, F.G., 1986: Groundwater and Wells: second Ed. Pp.575-579

Well Efficiency = (Actual specific capacity / Theoretical specific capacity)

Actual Specific Capacity = Q/s

Where: Q = Discharge of well, in gpm; and s = drawdown, in feet

Actual Specific Capacity = 25 gpm / 47.95 ft. = 0.82 gpm/ft.

Theoretical Specific Capacity = $\frac{Q}{s} = \frac{T}{264 \log \frac{0.3Tt}{r^2 S}} = \frac{T}{2000}$

Where: T = Transmissivity, in gpd/ft t = Time of pumping, in days S = Storage Coefficient, = 1.2×10^{-4} r = radius of well, in ft.

Theoretical Specific Capacity:	155.2	= 0.55
	(0.3)(13)	55.2)(1.03)
	$264\log(0.1875)$	(0.00012)

Efficiency = Actual Specific Capacity / Theoretical Specific Capacity = 0.82 / 0.55 = 149%

Appendix F

Water Quality Report

Water Quality

Well No. 1

Email information for report date: 10/7/19 12:55

C032141

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

TCEQ DW Lab ID TX 239

CORPORATE OFFICE					AUSTIN	OFFICE					Analytic	al Report
635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707			TECH		wy 71 W, Si Austin, TX	(78735			Pa	port Printed:	A 10/7/19	pex Drilling 12:55
Fax: (979) 778-3193	LAB	ORATO	DRIES, INC.		one: (512) 30 Fax: (512) 30		_		RE	port Printed.	10/7/13	C032141
MAJESTIC HILLS II NO1			10/01/19 12:00 by CLIEN 10/01/19 15:00 by Kelly			<i>Type</i> Grab			<i>Matrix</i> Drinking Wate	-	D-C # 5073	
Lab ID# C032141-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Meth	od	Batch	
Microbiological Analyses												
Total Coliforms	Absent	N/A		N/A	N/A	N/A	Austin	10/01/19 17:48 J	JLL SM9	223 B 2004	M104125	NEL
Escherichia coli (E.coli)	Absent	N/A		N/A	N/A	N/A	Austin	10/01/19 17:48 J	JLL SM9	223 B 2004	M104125	NEL

				Micr	obiologi	cal Analyses - Quality	y Control				Log10 C	omparison		
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli	(E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	10/01/19 17:48 JLL							M104125	
Duplicate	Absent	N/A		N/A	N/A	10/01/19 17:48 JLL		Absent				200	M104125	
Total Coliforms	- SM9223 B 200	4												Austin
Blank	Absent	N/A		N/A	N/A	10/01/19 17:48 JLL							M104125	
Duplicate	Absent	N/A		N/A	N/A	10/01/19 17:48 JLL		Absent				200	M104125	

		Sample Prepar	ation Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C032141-01										
Escherichia coli (E.coli) Total Coliforms	SM9223 B 2004 SM9223 B 2004	10/1/19 17:40 JLL 10/1/19 17:40 JLL	Austin Austin	A A	100 100	mL mL	100 100	mL mL	1 1	M104125 M104125

Chain-of-Custody &		635 P Bryan Phone	n Lab: L hil Gramm Blvd , Texas 77807 e: (979) 778-31 (979) 778-3193	707	750 Ausi Pho	s tin Lab: 0 W. Hwy. 71, 5 tin, Texas 7873 ne: (512) 301-9 ail: corp@aqua-	5 1559	C-O-C #	295073		AC AC	NIN	V-0023 R01
Client / Project Name:					* DEFINI	TIONS: DW - Drir	nking Water stody Maintain	NP - Non-Potable Water	S – Solid	LAB	USE ONL	Y (initials	de
Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Containe Volume	r Container	Sample Pres.	ed CTU – Custody Transfer L Analysis Re		Cooler	Bottle S	ub- tract	Lab ID #
5			Grab	DW	0.12L	St P	1, 5	Total Coliform & E.co		ot			32141-0LA
MHITE!	111-1-19		6	DW	11	P	1	NOZNO3 pH CI	Cond F.F.	19/1	- +		32020-01A
MHTT#1	10-F-19					1		Hardness My S	SULTDS		I V	MICO.	10020 V (1
for the design of the second	1 6 18-13												
		nizatori di 2000 il la compressione d'anno de la compressione de la compressione de la compressione de la compre						MTER	and a second and a s				
									ogen elsen solar men solar anna anna anna anna anna anna anna a				
								899649449294849949446999444699944469994494994949494					
By relinquishing the above samples accreditation will be subcontracted the method in the "Analysis Reques Relinquished by: (print & sign)		ent approves all me			found of the	e subcontract lab's ch or the subcontr Sample Info	s details. Other ract lab. A cun		ion will be analyzed by a elds of accreditation and				-Tech's fields of ed, the client will note Sample Info
ASI			Date	76-19	Time C	"X" all that apply I leed Chilled/Refrig Cust. Sealed Not Chilled		ME	REFE		Date	Time	"X" all that apply Rec'd Chilled Cond Good CTU * I ced in Transit
Relinquished by: (print & sign)	Client CATL Fie	ld	Date		Time C	I Iced Chilled/Refrig	Rec'd by: (prir	nt & sign) Client ATL	Field	(1994)	Date	Time	Cond Good
Relinquished by: (print & sign)	Client CATL Fiel	d arrival in Lab	Date		Time C	Chilled/Refrig		nt & sign) BReceived in Lab Kukowski KW	00000000000000000000000000000000000000		Date 10-1-1 9	Time 150c	
Field Sample ID	Time pH	D.O.	Cl ₂ F	8	Client Ad Apex Dr PO Box Marble F Phone: 8		354	F V-		omments:			Defend Good
pH Paper ID#: 5 5 = Na ₂ S ₂ O ₃		°C (not frozen)	2 = H ₂ SO	5		3 = HCI		4 = HNO3	Laborato	ry Comments	5:		
$\frac{\Theta}{100}$ 5 = Na ₂ S ₂ O ₃	6 = NaOH		7 =			8 =		9 =					
Line below documents condition at re Cooler ID: Temp °C: CLA 9.3	receipt in Laboratory b	Therm ID:	n. Lab location n 5570	toted by check Cooler ID:		f C-O-C.) Temp °C:	/	CT Therm ID:					

Page 3 of 3 C032141_2 ATL 030419 FIN_is 10 07 19 1255

Email information for report date: 10/14/19 13:24

C032020

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

TCEQ DW Lab ID TX 239

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Austin, TX 78735 Bryan, TX 77807 **Report Printed:** 10/14/19 13:24 Phone: (979) 778-3707 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C032020 C-O-C # Matrix **MAJESTIC HILLS II NO1** Collected: 10/01/19 12:00 by CLIENT Type Received: 10/01/19 15:00 by Kelly Kukowski Grab **Drinking Water** 295073 Lab ID# C032020-01 Result Units Notes MDL Adi MDL SQL Lab Analyzed Method Batch General Chemistry **Total Dissolved Solids** 1020 mg/L 25.0 50.0 50.0 Bryan 10/02/19 14:02 MRH SM2540 C 2011 M104156 NEL 0.0200 0.0200 10/03/19 14:45 JLL SM4500-NO3-F 2011 Nitrate as N (NO3N) < 0.0200 mg/L Austin [CALC] NEL Nitrite as N <0.01 SM4500 NO2- B 2011 0.002 0.002 0.01 Austin 10/02/19 10:45 JLL mg/L M104148 NEL Nitrate/Nitrite as N < 0.02 mg/L 0.02 0.02 0.02 Bryan 10/03/19 14:45 MRB SM4500-NO3-F 2011 M104223 INF Total Hardness (EDTA) as CaCO3 760 mg/L 1.00 5.00 5.00 Bryan 10/04/19 08:11 MRH SM2340 C 2011 M104271 NEL Fluoride 2.08 0.04 0.04 0.10 10/08/19 14:15 PNS SM4500-F C 2011 mg/L Brvan M104397 NEL pH, Lab 7.8 S.U. Hold-03 N/A N/A Austin 10/04/19 12:24 KT SM4500-H+ B 2011 M104292 DWP Deg. C Temperature @ pH Analysis 19.8 N/A N/A Austin 10/04/19 12:24 KT SM4500-H+ B 2011 M104292 DWP Specific Conductance (adjusted to 1280 uS/cm 2.00 2.00 2.00 Bryan 10/03/19 12:11 CJO SM2510 B 2011 M104230 DWP,NEL 25.0°C) Metals (Total) 0.092 Iron 0.002 0.002 0.010 Bryan 10/11/19 15:40 PNS EPA 200.7 R4.4 mg/L M104453 NEL 1.68 10/03/19 15:51 AKS Manganese ug/L 0.108 0.111 0.412 Bryan EPA 200.8 R5.4 M104213 NEL **General Chemistry** Sulfate as SO4 460 mg/L 0.01 30 30 Sub 10/03/19 11:33 ANA EPA 300.0 SUB NEL Chloride 13.6 mg/L 0.02 3 Sub 10/02/19 16:36 ANA EPA 300.0 SUB NEL **Explanation of Notes** Hold-03 This parameter was outside of EPA holding at the time the sample was received in the laboratory. J

Analyte detected below the SQL but above the MDL.

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 10/14/19 13:24

Report Printed:

C032020

				C	General (Chemistry - Quality C	ontrol						
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch
Fluoride - SM4500-	F C 2011												Brya
Initial Cal Check	0.32	mg/L				10/08/19 14:15 PNS	0.356		91.0	90 - 110			1910086
Blank	<0.10	mg/L		0.04	0.10	10/08/19 14:15 PNS							M104397
LCS	0.73	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798		91.9	90 - 110			M104397
CS Dup	0.73	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798		91.9	90 - 110	0.00	6.23	M104397
Matrix Spike	4.20	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798	3.45	93.9	78.1 - 125			M104397
Matrix Spike Dup	4.22	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798	3.45	96.4	78.1 - 125	2.63	5.72	M104397
MRL Check	<0.10	mg/L	J (0.09)	0.04	0.10	10/08/19 14:15 PNS	0.0998		90.3	73.4 - 118			M104397
Nitrate/Nitrite as N	- SM4500-N	O3-F 2011											Brya
nitial Cal Check	1.25	mg/L				10/03/19 14:45 MRB	1.15		109	90 - 110			1910044
Low Cal Check	0.02	mg/L				10/03/19 14:45 MRB	0.0200		104	70 - 130			1910044
Blank	< 0.02	mg/L		0.02	0.02	10/03/19 14:45 MRB							M104223
LCS	0.53	mg/L		0.02	0.02	10/03/19 14:45 MRB	0.500		105	91.3 - 109			M104223
CS Dup	0.51	mg/L		0.02	0.02	10/03/19 14:45 MRB	0.500		101	91.3 - 109	4.14	6.8	M104223
Matrix Spike	0.68	mg/L		0.02	0.02	10/03/19 14:45 MRB	0.500	0.14	109	94.1 - 111			M104223
Matrix Spike Dup	0.69	mg/L		0.02	0.02	10/03/19 14:45 MRB	0.500	0.14	111	94.1 - 111	1.48	8.65	M104223
Nitrite as N - SM450	00 NO2- B 2	2011											Aust
Initial Cal Check	0.07	mg/L				05/29/19 12:06 KT	0.0725		102	90 - 110			1905274
Blank	<0.01	mg/L		0.002	0.01	10/02/19 10:45 JLL							M104148
CS	0.08	mg/L		0.002	0.01	10/02/19 10:45 JLL	0.0800		99.6	90 - 110			M104148
_CS Dup	0.08	mg/L		0.002	0.01	10/02/19 10:45 JLL	0.0800		97.0	90 - 110	2.68	8.12	M104148
Matrix Spike	0.08	mg/L		0.002	0.01	10/02/19 10:45 JLL	0.0800	<0.01	99.6	70.6 - 117			M104148
Matrix Spike Dup	0.08	mg/L		0.002	0.01	10/02/19 10:45 JLL	0.0800	<0.01	100	70.6 - 117	0.879	8.18	M104148
MRL Check	0.01	mg/L		0.002	0.01	10/02/19 10:45 JLL	0.0100		107	70 - 130			M104148
oH, Lab - SM4500-H	H+ B 2011												Aust
Duplicate	7.6	Std Units				10/04/19 12:24 KT		7.6			0.132	2.05	M104292
Reference	6.9	Std Units				10/04/19 12:24 KT	6.86		100	95 - 105			M104292
Reference	9.1	Std Units				10/04/19 12:24 KT	9.18		99.6	95 - 105			M104292
Reference	6.9	Std Units				10/04/19 12:24 KT	6.86		101	95 - 105			M104292
Reference	9.1	Std Units				10/04/19 12:24 KT	9.18		99.5	95 - 105			M104292
Specific Conductar	nce (adjuste	d to 25.0°C) - S	M2510 B 2011										Brya
nitial Cal Check	489	uS/cm				10/03/19 12:11 CJO	472		104	85 - 115			1910049
Blank	<2.00	uS/cm		2.00	2.00	10/03/19 12:11 CJO							M104230
Duplicate	673	uS/cm		2.00	2.00	10/03/19 12:11 CJO		679			0.888	2	M104230
LCS	1400	uS/cm		2.00	2.00	10/03/19 12:11 CJO	1410		99.5	90 - 110			M104230

Form: C:\ELMNT\FORMAT\ATL 030419 FIN_LS.RPT

Page 3 of 14 C032020_1 ATL 030419 FIN_ls 10 14 19 1323

Analytical Report

13:24

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling **Report Printed:** 10/14/19 C032020

					General (Chemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Total Dissolved Sol	ids - SM254	0 C 2011											Bryai	an
Blank	<25.0	mg/L		25.0	25.0	10/02/19 14:02 MRH							M104156	
Duplicate	296	mg/L		50.0	50.0	10/02/19 14:02 MRH		296			0.00	9.13	M104156	
Reference	520	mg/L		100	100	10/02/19 14:02 MRH	500		104	81 - 121			M104156	
Total Hardness (ED	TA) as CaC(O3 - SM2340	C 2011										Bryai	an
Initial Cal Check	60.0	mg/L				10/04/19 08:11 MRH	54.4		110	85 - 115			1910060	
Blank	<1.00	mg/L		1.00	1.00	10/04/19 08:11 MRH							M104271	
Duplicate	400	mg/L		2.00	2.00	10/04/19 08:11 MRH		400			0.00	9.52	M104271	
LCS	100	mg/L		1.00	1.00	10/04/19 08:11 MRH	100		100	90 - 110			M104271	
LCS Dup	100	mg/L		1.00	1.00	10/04/19 08:11 MRH	100		100	90 - 110	0.00	6.47	M104271	
Matrix Spike	600	mg/L		2.00	2.00	10/04/19 08:11 MRH	200	400	100	87.6 - 111			M104271	
MRL Check	3.00	mg/L		1.00	1.00	10/04/19 08:11 MRH	4.00		75.0	70 - 130			M104271	

					Metals	(Total) - Quality Cont	rol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Iron - EPA 200.7 R	R4.4													Bryan
Blank	<0.010	mg/L		0.002	0.010	10/10/19 16:25 PNS							M104453	
LCS	0.933	mg/L		0.002	0.010	10/10/19 16:28 PNS	1.00		93.3	84.5 - 115.4			M104453	
LCS Dup	0.929	mg/L		0.002	0.010	10/10/19 16:31 PNS	1.00		92.9	84.5 - 115.4	0.394	20	M104453	
Duplicate	0.232	mg/L		0.002	0.010	10/10/19 16:35 PNS		0.235			1.37	20	M104453	
Matrix Spike	1.15	mg/L		0.002	0.010	10/10/19 16:38 PNS	1.00	0.235	91.8	69.5 - 130.4			M104453	
Manganese - EPA	200.8 R5.4													Bryan
Blank	<0.412	ug/L		0.111	0.412	10/03/19 15:14 AKS							M104213	
LCS	8.89	ug/L		0.112	0.416	10/03/19 15:22 AKS	10.0		88.9	84.5 - 115.4			M104213	
LCS Dup	8.83	ug/L		0.112	0.416	10/03/19 15:29 AKS	10.0		88.3	84.5 - 115.4	0.632	20	M104213	
Duplicate	1.81	ug/L		0.111	0.412	10/03/19 15:36 AKS		1.68			7.65	20	M104213	
Matrix Spike	10.9	ug/L		0.112	0.416	10/03/19 15:44 AKS	10.0	1.68	91.7	69.5 - 130.4			M104213	

			Prep	paration	Procedures - Q	uality Control							
Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Turbidity - SM2130 B 2011													Bryan

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807

Phone: (979) 778-3707

Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Ap Report Printed: 10/14/19

13:24 C032020

Apex Drilling

		Sample Prep	aration Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C032020-01										
Fluoride	SM4500-F C 2011	10/8/19 14:15 PNS	Bryan	А	25.0	mL	25.0	mL	1	M104397
Iron	EPA 200.7 R4.4	10/9/19 10:03 AKS	Bryan	С	10.0	mL	10.2	mL	1	M104453
Manganese	EPA 200.8 R5.4	10/3/19 10:47 AKS	Bryan	С	10.0	mL	10.3	mL	1	M104213
Nitrate/Nitrite as N	SM4500-NO3-F 2011	10/3/19 11:42 MRB	Bryan	Е	10.0	mL	10.0	mL	1	M104223
Nitrite as N	SM4500 NO2- B 2011	10/2/19 10:45 JLL	Austin	D	25.0	mL	25.0	mL	1	M104148
pH, Lab	SM4500-H+ B 2011	10/4/19 12:24 KT	Austin	D	50.0	mL	50.0	mL	1	M104292
Sample Acidified to pH<2 in Lab	N/A	10/1/19 15:54 KK	Bryan	С	100	mL	100	mL	1	M104112
Specific Conductance (adjusted to 25.0	°C)SM2510 B 2011	10/3/19 12:11 CJO	Bryan	Α	25.0	mL	25.0	mL	1	M104230
Temperature @ pH Analysis	SM4500-H+ B 2011	10/4/19 12:24 KT	Austin	D	50.0	mL	50.0	mL	1	M104292
Total Dissolved Solids	SM2540 C 2011	10/2/19 14:02 MRH	Bryan	Α	50.0	mL	100	mL	1	M104156
Total Hardness (EDTA) as CaCO3	SM2340 C 2011	10/4/19 8:11 MRH	Bryan	С	10.0	mL	50.0	mL	1	M104271
Turbidity	SM2130 B 2011	10/2/19 9:20 MRH	Bryan	С	10.0	mL	10.0	mL	1	M104143
See sub-contract reports for preparation	n information of subcontracted analyses.									
C032020-01RE1										
Sample Acidified to pH<2 in Lab	N/A	10/1/19 15:56 KK	Bryan	Е	100	mL	100	mL	1	M104113

Chain-of-Custody &		635 P Bryan Phone	n Lab: hil Gramm Blvd , Texas 77807 e: (979) 778-31 (979) 778-3193	707	750 Aus Pho	s tin Lab: 00 W. Hwy. 71, 5 stin, Texas 7873 one: (512) 301-9 ail: corp@aqua-	5 559	C-O-C #	295073		M	TNI BORATONI) V-0023	2.004
Client / Project Name:		•			* DEFINI	ITIONS: DW - Drir		NP - Non-Potable Water	S – Solid		3 USE OI			
Field Sample ID	Start	End	Composite	Sample	Containe	er Container	stody Maintair Sample	ed CTU – Custody Transfer L Analysis Re		Cooler	Bottle	Sub-)
6	Date / Time	Date / Time	Type Grab	Matrix*	0.12L	St P	Pres. T			ID	рН	contract	Lab II	NAMES OF TAXABLE PARTY OF TAXAB
MUMET	12:00			1.	0.12L		1,5	Total Coliform & E.co		ot		~~ -\	C03214	
(14, 71, #1	10-1-19		6	DW		P		NOZNO3 pH CI	Cond F.Fe			HWA.	<u>Co3Lo2c</u>)-01A
MHII #/	12:00				-			Hardness Mn S	SUUTDS			Norm you do norm in the case of an		and the second
								an a				Contraction of the Contraction o	and the second s	
								Mer	na an a				V ()	
				Stowage of the Carried on Carried and C	Conference on the second s		San						NEQUI-INSTRUMENTAL AND AN AND AND AND AND AND AND AND	
							*****	9999/04/04/02/04/04/04/04/04/04/04/04/04/04/04/04/04/	######################################					
By relinquishing the above samples accreditation will be subcontracted the method in the "Analysis Reques													Aqua-Tech's fiel required, the clier	ds of nt will note
	Client Client ATL Fi					Sample Info "X" all that apply	21524.00	nt & sign) Client ATL				an request.		nple info
ASI			Date	76-19	1000	□ Iced □ Chilled/Refrig □ Cust. Sealed □ Not Chilled		ME	nett		Date	Tin	ne 🛛 Rec'o Conc CTU	*
Relinquished by: (print & sign)	Client Client ATL Fi	eld	Date	internal conference	Time I	□ Iced □ Chilled/Refrig □ CM *	Rec'd by: (pri	nt&sign) Client ATL	Field		Date	Tin	ne 🗆 Rec'o Conc CTU	*
Relinquished by: (print & sign)	Client CATL Fie	ld arrival in Lab	Date	and a state of the	Time I	Not Chilled Control Chilled/Refrig Chilled/Refrig Chilled/Refrig Chilled/Refrig Chilled/Refrig		nt & sign) @Received in Lab KUKOWSKI ////		doğuna taraktır yarış tarşar keştini kanalaran	Date 0- -	Tin 19 1	e BRec'o	Rec'd Iced
Field Sample ID	Time pH	D.O.	Cl _z I	Flow		Not Chilled	one # ·	- PV-		omments:			D-Cond	Good
			-		Apex Dr PO Box	rilling				Sinnonto,				
						-867 Falls, TX 786	654							
					Phone:	830-798-273	39							
					Fax: 830	0-798-2703								
pH Paper ID#:	1 ≤ 6	°C (not frozen)	2 = H ₂ SO	4		3 = HCI		4 = HNO3	Laborato	y Commer	nts:			
5 = Na2S2O3	6 = NaOH		7 =		ong den dan orden kanne kritere gene en van gegene	8 =		9 =						
Line below documents condition at re			n. Lab location r											
CLF Temp ℃:	<u>/9.3</u> °		5570	Cooler ID:		Temp ℃:	/	CT Therm ID:						

Page 6 of 14 C032020_1 ATL 030419 FIN_Is 10 14 19 1323

Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663 903/984-0551

Aqua-Tech Laboratories (Austin

635 Phil Gramm Blvd. Bryan, TX 77807-9104

John Brien

Report

3 4 5

1

2

Table of Contents

Printed 10/07/2019

Page 1 of 1

C032020

	This report consists of this Table of Contents and the following pages:	
Report Name 892193_r03_03_ProjectResults	Description Ana-Lab Project P:892193 C:AQU5 Project Results t:304	Pages 2
892193_r03_06_ProjectTRRP	Ana-Lab Project P:892193 C:AQU5 Project TRRP Results Report for Class	2
892193_r10_05_ProjectQC	Ana-Lab Project P:892193 C:AQU5 Project Quality Control Groups	1
892193_r99_09_CoC_1_of_1	Ana-Lab CoC AQU5 892193_1_of_1	2
	Total Pagas	7

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Phone 903/984-0551 Contract Conference on the conference of the conference on the co

	Ana-Lab Corp. P.O. Box 9000	Kilgore, TX 7566	3 Rep	ort Page 2 of 8
ANAILAD	Phone 903/984-0551 FAX 903/984-5914 e-Mail Employee Owned I	corp@ana-lab.com ntegrity Caring Continual In	nprovement	Daga 1 - £ 2
HE COMPLETE SERVICE LAB	Results Printed: 10/07/201	9 14:21		Page 1 of 2 892193
Report To	C032020	Account AQU5-C		
Aqua-Tech Laboratories (Aust John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	tin			
biyun, 17 //00/ 2101	Results			
1825070 C032020-01			Received:	10/02/2019
Drinking Water	Collected by: Client Aqua-Tech Labo Taken: 10/01/2019 12:00:00	ratori	PO:	10/02/2017
EPA 300.0 2.1	Prepared: 861896 10/02/20)19 16:36:00 Analyzed 86	51896 10/02/2019	16:36:00 ATN
Parameter N Chloride		RL Flag 3.00	CAS	Bottle 01
EPA 300.0 2.1	Prepared: 862068 10/03/20	019 11:33:00 Analyzed 86	52068 10/03/2019	11:33:00 ATN
Parameter N Sulfate		RL Flag 30.0	CAS	Bottle 01
	Sample Prepara	tion		
				10/02/2010
1825070 C032020-01			Received:	10/02/2019
	D 1 10/07/2	019 17:00:00 Analyzed	10/07/2019	17:00:00 WTS
Cooler Return	<i>Prepared:</i> 10/07/20			

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

	Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75	663 Report Page 3 of 8
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caring Continua	l Improvement
THE COMPLETE SERVICE LAB	Results Printed: 10/07/2019 14:21	Page 2 of 2 892193

Qualifiers:

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

ill for

Bill Peery, MS, VP Technical Services

5

Page 9 of 14 C032020 1 ATL 030419 FIN Is 10 14 19 1323

NELAP-accredited #T104704201-19-15

	Ana-Lab	Corp. P.O.	Box 9000	Kilgore, T	X 75663						Report	Page 4 of 8
ANA-LAB	Phone 903/98	84-0551 FAX 903/9	84-5914 e-Mail c	corp@ana-lab.co	m				LELA	P-accredited	#02008	
THE COMPLETE SERVICE LAB		Ι	Results	s Sum	mary	I			0/07/2019		of 2 89219	3
Aqua-Tech Laboratories (Au John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	ıstin				C032020			1	1050		0/21/	
<u>CAS</u>	Parameter			Results	MDL	SDL	MQL	MQLAdj	Flag Un	its Target	Bottle	Dilute
Drinking Water			Ion Chromatogra	aphy				El	PA 300.0 2.1	l		
	C032020-01	861896		Collection:	10/01/20	019	12:00:00	Client		Recei	ved: 10/02	2/2019
Prepa	1100.	001090				Analyzed:		861896	10/2/19	16:36:0)	
P	Chloride	000000		13.6	0.0196	0.196	0.300	3.00	mg		01 ry	10.00
Prepa	area:	862068				Analyzed:		862068	10/3/19	11:33:0)	
	Sulfate			460	0.00775	0.775	0.300	30.0	mg		01 ry	100.00
MDL is Method Dete	ection Limit (40 CF	R 136 Appendix B)				SDL is Sample	e Detection Lim	it and is the adjuste	ed MDL (sampl	e specific dilutio	ons, dry weight)	

MQL is the Method Quantitation Limit and corresponds to a low standard *Qualifiers:*

SDL is Sample Detection Limit and is the adjusted MDL (sample specific dilutions, dry weight) MQLADJ is the Adjusted Method Quantitation Limit (dilutions, dry weight)

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation. These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

LDSClient v1.14.40.1834

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

2

5

www.ana-lab.com

Page 10 of 14 C032020_1 ATL 030419 FIN_Is 10 14 19 1323

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

1

2

4

5

LELAP-accredited #02008 Printed 10/07/2019 Page 2 of 2 **Results Summary** Project 892193 C032020

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

Bill Poory

Bill Peery, MS, VP Technical Services

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

Page 11 of 14 C032020 1 ATL 030419 FIN Is 10 14 19 1323

Support for the properties of series of ser		Ana-La	b Corp	. P.C). Box	9000	Kilgore	e, TX 7	5663	Rep	oort Pa	ge 6 of 8
Report Io Agua-Tech Laboratories (Ausin Join Brien 635 Phil Gramm Blvd. Byan, TX. 77807-9104 South Strip (AQU5-C) Account (AQU5-C) South Strip (AQU5-C) (AQU5-C) South	ANA-LAB	Phone 903/984				· · · · · ·	<u> </u>				ited #02	008
Aqua: Tech Laboratories (Austin John Biren (35 Phil) Gramm Blvd. Bryan, TX 7780-790-7 Analytical Set 861896 Reading MDL MDL Link File Joun Blvd. Bryan, TX 7780-700-7 861896 Roading MDL MDL MDL Inits File File<	COKPLETE SERVICE LAB	Qı	uality	y Co	ontro	1	Pri	inted 10/0	07/2019			nge 1 of 1 892193
Aquat lean Laboratories (Austin 363 Phil) Gramm Bive. Series in the series of the serie	Report To								C			
Parameter Chonde Paryse Statisse Radius Statisse MOL Statisse MOL Statise	John Brien 635 Phil Gramm Blvd.	stin						AQU5-4	C			
Premmery ChloridePrepSet 86189Road NDMOL 	Analytical Set	861896									EP.	A 300.0 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0		<i>MQL</i> 0.300	Units						
Parameter Chloride PrepSet 861896 LCS 5,01 LCSD 4,98 Loso 5,00 Linits% 85,0-110 LCS% 100 LCSD% 99,6 Units mgL RPD 6,001 Linits% 20,0 Parameter Chloride Sample 1825070 MSD 22,8 12,8 MSD 19,7 UNK 10,0 Rown 80,0-120 Linits% 90,0 MSD% 90,0 Units mgL RPD 80,01 Linits% 20,0 Analytical Set Sample 1825070 MSD 22,8 MSD 23,2 UNK 10,0 Rown 80,0-120 Linits% 90,0 MSD% 95,0 Units mgL RPD 42,62 Linits% 20,0 Analytical Set Sample 1825070 MSD 22,8 MSD 19,7 UNK 10,2 Rown 10,0 Linits% 80,0-120 MSS 90,0 MSD mgL RPD 42,62 Linits% 20,0 Analytical Set Secole MSD MSD MDL MSD MDL MSD MDL MSD mgL MSD MDL MSD MSD Linits% MSD MSS MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD <td></td> <td></td> <td>9.76 9.58</td> <td>10.0 10.0</td> <td>mg/L mg/L</td> <td>97.6 95.8</td> <td>90.0 - 110 90.0 - 110</td> <td></td> <td>120450368 120450385</td> <td></td> <td></td> <td></td>			9.76 9.58	10.0 10.0	mg/L mg/L	97.6 95.8	90.0 - 110 90.0 - 110		120450368 120450385			
Chloride 861896 5.01 4.98 5.00 85.0 - 110 100 99.6 mg/L 0.011 20.0 MSD MSD MSD MSD MSM Mom Limits MSM MSD MSM					LCS Du	р						
Parameter Chloride Sample 182500 MS MSD 2.8 MSD 2.8 <td></td> <td>-</td> <td></td> <td></td> <td>MCD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><i>Limit%</i> 20.0</td>		-			MCD							<i>Limit%</i> 20.0
Chloride 1825070 22.8 23.2 13.6 10.0 80.0 - 120 92.0 96.0 mg/L 4.26 20.0 Analytical Set 862068 19.6 19.7 10.2 10.0 80.0 - 120 94.0 95.0 mg/L 1.06 20.0 Analytical Set 862068 862068 MDL MQL Unis File	Danamatan	Sample	MS	MED		Known	Limits	M\$%	MSD%	Unite	חפפ	I in. it0/
Parameter PrepSet Reading MDL MQL Units File Isodes File		1825070	22.8	23.2	13.6	10.0	80.0 - 120	92.0	96.0	mg/L	4.26	20.0
Parameter SulfatePrepSet 82008Reading NDMDL OU075MQL OU075Units ng/LFile 120455782File 120455782SulfateSulfateFile 120455782SulfateSulfateFile 120455782SulfateSulfateFile 120455782SulfateSulfa	Analytical Set	862068			D 1 1						EP.	A 300.0 2
Parameter Sulfate Reading Known Units Recover% Limits% File Sulfate File Sulfate Sulfate <t< td=""><td></td><td></td><td>0</td><td></td><td><i>MQL</i> 0.300</td><td>Units</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			0		<i>MQL</i> 0.300	Units						
LCS Dup Parameter PrepSet LCS LCSD Known Limits% LCS% LCSD% Units RPD Limit% Sulfate 862068 5.08 5.05 5.00 88.0 - 110 102 101 mg/L 0.592 20.0 MSD MSD UNK Known Limits MS% MSD% Units RPD Limit% Sulfate Sample MS MSD UNK Known Limits MS% MSD% Units RPD Limit% Sulfate 1824706 17.1 16.8 12.8 5.00 80.0 - 120 86.0 80.0 mg/L 7.23 20.0			10.2 10.1	10.0 10.0	mg/L mg/L	102 101	90.0 - 110 90.0 - 110		120455782 120455798			
Sulfate 862068 5.08 5.05 5.00 88.0 - 110 102 101 mg/L 0.592 20.0 MSD MSD UNK Known Limits MS% MSD% Units RPD Limit% Sulfate 1824706 17.1 16.8 12.8 5.00 80.0 - 120 86.0 80.0 mg/L 7.23 20.0			10.5	10.0	-		90.0 - 110		120455805			
Parameter Sample MS MSD UNK Known Limits MS% MSD% Units RPD Limit% Sulfate 1824706 17.1 16.8 12.8 5.00 80.0 - 120 86.0 80.0 mg/L 7.23 20.0		-			MSD							<i>Limit%</i> 20.0
Sulfate 1824706 17.1 16.8 12.8 5.00 80.0 120 86.0 mg/L 7.23 20.0	Parameter	Sample	MS	MSD		Known	Limits	MS%	MSD%	Units	RPD	Limit%
1024707 24.5 24.6 19.0 5.00 $80.0 - 120$ 94.0 104 mg/L 10.1 20.0		-										

Blank - Method Blank; CCV - Continuing Calibration Verification

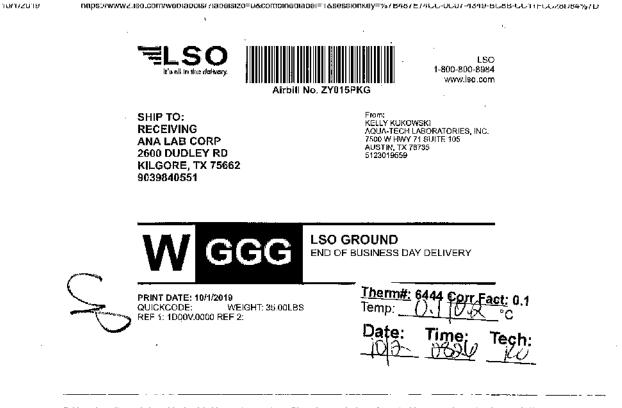
Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

IN ACCORC

- 1 2 3 4 5
- 2

1 of 2

ATL - Bryan Facility: 635 Phil Granm Bird. R.yan, TX 77807 (979) 778-3707 Fax (979) 778-3193 Analysis Request for: All analyses must be performed by a TNI approved method certified by the TCEQ. Contact ATL's sample custodian via voice and email if your methods do not meet this criteria. **QUA-TECH** LABORATORIES, INC. ATL - Austin Fardity, 7500 Hwy 71 W, Suite 105 Austin, TX 78735 (812) 301-8559 Fax (812) 801-8552 Sample ID: C032020-01 Ana-Lab Corp. (NELAP Cert. T104704201) 2600 Dudley Road Kilgore, TX 75662 Phone: (903) 984-0551 Fax: (903) 984-5914 SHIPPED TO: Sampled: 10/01/19 12:00 Chain-of-Custody & Analysis Request Matrix: Drinking Water 847 - C032020 Laboratory ID >> 0-0-0 # 92020 Page 1 of 1 T104704371


CONTAINERS SUPPLIED: Chloride - EPA 300.0) C032020-01 [B] - CI SO4 0.5LP SO4 DW - EPA 300.0 (ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.)

892193 CoC Print Group 001 of 001

Image: Ski All-Bryan Sampler Date Time The discovery Series Abbreviation Ski ////////////////////////////////////	ant X TLAussin ATL-Bryan Sorryler Date Time Time Time Time SKi All-Bryan Sorryler I/J-[-4] I/J-[-4] I/J-[-4] I/J-[-4] Social Structures and Standard Structures Non-Dainking Ware SKi All-Bryan Cooler 1: AQU5 - ZY015PKG I/J-[-4] I/J-[-4] I/J-[-4] Social Structures Universe construction table Cooler 1: AQU5 - ZY015PKG Samole Ust Samole Ust Samole Ust Strat-Rab Cooler 1: AQU5 - ZY015PKG Date Time Samole Ust Aqua-Tech Comments and Speci Strat-Rab Converter Terp. (CT) Instead above: Date Time Reserved ust SDAY TAT Strat-Rab Converter Terp. (CT) Thermometar To Please email reports to: SDAY TAT N/A N/A N/A Please terture cooler(s) to: SDAY TAT	BRET					
Image: series of the series	Image: Ski in the second se		Austin Facility		N/A	N/A	N/A
Image: Ski Art-Read Sampler Date Time Time Time Time Abbre viation Ski Image: Ski Abbre viation Ski Image: Ski Image: Ski Image: Ski Image: Ski Image: Ski Ski Abbre viation Ski Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-Te Image: Ski Image: Ski Image: Ski Image: Ski Adua-	Ign X ATL-Austin A rL- Bryan Sampler Date Time Time Time Time Abbreviation SKi V V V V V V V V Abbreviation SKi V V V V V V V V Abbreviation SKi V V V V V V V V Abbreviation SKi V V V V V V V V V V V Abbreviation SKi V		P lease return cooler(\$) to:				Cooler 1
Interview Alt-Bryan Sampler Date Time Thed Abbre viation Ski ////////////////////////////////////	Name ATL-Austin ATL- Bryan Sampler Date Time Time Time Time Ski V/V V		corp@aqua-techlabs.com		Corrected Temp. (C	Temp. Read (TR)	Cooler Temperaturo (°C)
Internation Art-Bryan Sampler Date Time Thed Abbre viation Ski ////////////////////////////////////	Name Martin Arta-Lacion Arta-Lacion Cooler 1: AQU5 - ZY015PKG Date Time Text Adbreviation: Arta-Lacion Cooler 1: AQU5 - ZY015PKG Date Time Fissaived text Aqua-Te Arta-Lacion Odde Time Fissaived text 5 DAY TAT		Please amail reports to:	to) listed above.	fpt in lab (shipped	is condition at roce	Line below document
In XATLAusin AIL-Byan Sampler Date Time Thed Abbreviations Ski Cooler 1: AQU5 - ZY015PKG View Abbreviations Unscience intag Sample the Abbreviations Sample the Abbreviations	Name The The The The Abbreviation: Ski ATL-Autin ATL-Bryan Sampler /U-L-L/Q /G/QS Not Called Abbreviation: Ski Cooler 1: AQU5 - ZY015PKG VU-L-L/Q /G/QS Sample Vit Aqua-Te Universitie Cooler 1: AQU5 - ZY015PKG Not Called 'N' at itsid apply Aqua-Te Universitie Date Time Trade to be for the same to be same t		5180	1		cia.i.a	Kathy Tarver Arts
sam XATL-Austin ATL-Bryan Sompler Date Time Tree Abbreviations SkiCooler 1: AQU5 - ZY015PKG ////////////////////////////////////	Name Mathematical State Date Time Time Time Time Time Time Abbreviation: SKi V/V V/V V/V V/V V/V V/V Not Calibrat Ski V/V V/V V/V V/V V/V Not Calibrat Ski V/V Cooler 1: AQU5 - ZY015PKG V/V Sample Vito Sample Vito V/V Simulation Sample Vito Aqua-Te V/V Sample Vito Aqua-Te	5 DAY TAT	ime Received bed		Y	CReceiver in Las	Received by: (print & sign)
am XATL-Austin ATL-Bryan Sampler Date Time Thed Abbreviations: DW- Diriking Wars Ski Abbreviations: DW- Diriking Wars NP: Non-Potabala Wider S- Sofie S- Sofie CTU - C.seooy Tarsfer Unbichen	an) X ATLAusin AIL-Biyan Sampler Date Time Thed Abbreviations: DW-Dirking Wass Ki	Aqua-Tech Comments and Special Instructio					Lone Star
LAIL-Bryan Sar-pler Date Tme Inted Abbreviations	AIL-Bryan Starryler Date Tree Abbreviations	NP - Storie Pasto 9 - Solid CTU - Custop Tarafar Unbrokan LG - Utar Plast c	249/ 642		AND		Kelly Kukowski
		Abbreviations: DW- Drinking Water		نغاد د ي	AIL-Biyan	X ATL-Austin	Reincuished by, (print & sign)

2 of 2

892193 CoC Print Group 001 of 001

Fold on above line and place shipping label in pouch on package. Please be sure the barcodes and addresses can be read and seamed. Shipping Instructions

- 1. Fold this page along the horizontal line above.
- 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To locate a drop box near you, click on Find A Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping, Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone Star Overright account number,

This label is valid for use for 3 months from the date printed. Use of expired labels may result in delayed billing and / or additional research charges. LIMIT OF LIABILITY: We are not responsible for claims in excess of \$160 for any reason unless you: 1) declare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document yeur actual loss in a timely manner. We will not pay any claim to excess of the actual loss, We are not fieldle for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a package without obtaining a celivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR \$30 AM DELIVERIES OR RESIDENTIAL DELIVERIES.

Water Quality

Well No. 3

Email information for report date: 10/8/19 11:25

C032370

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

TCEQ DW Lab ID TX 239

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 3 C032370 2 ATL 030419 FIN Is 10 08 19 1125

CORPORATE OFFICE					AUSTIN	OFFICE						Analytica	l Report
635 Phil Gramm Boulevard Bryan, TX 77807		JA-	TECH	7500 H	wy 71 W, Si Austin. Tک							Аре	x Drilling
Phone: (979) 778-3707	LAB	ORAT	ORIES, INC.		one: (512) 30	1-9559				Report Printe	ed:	10/8/19	11:25
Fax: (979) 778-3193				ł	-ax: (512) 30	1-9552	_						C032370
MAJESTIC HILLS II NO3			: 10/03/19 12:00 by CLIEN : 10/03/19 15:00 by Kelly			<i>Type</i> Grab			<i>Matrix</i> Drinking W	'ater	C-O-C # 295112		
Lab ID# C032370-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	N	Nethod		Batch	
Microbiological Analyses													
Total Coliforms	Absent	N/A		N/A	N/A	N/A	Austin	10/03/19 17:40	JLL S	6M9223 B 2004		M104258	NEL
Escherichia coli (E.coli)	Absent	N/A		N/A	N/A	N/A	Austin	10/03/19 17:40	JLL S	SM9223 B 2004		M104258	NEL

				Micr	obiologi	cal Analyses - Qualit	y Control				Log10 C	omparison		
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli	(E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	10/03/19 17:40 JLL							M104258	
Total Coliforms -	SM9223 B 200	4												Austin
Blank	Absent	N/A		N/A	N/A	10/03/19 17:40 JLL							M104258	

		Sample Prep	aration Sum	nary					External Dilution			
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch		
C032370-01												
Escherichia coli (E.coli)	SM9223 B 2004	10/3/19 17:30 JLL	Austin	А	100	mL	100	mL	1	M104258		
Total Coliforms	SM9223 B 2004	10/3/19 17:30 JLL	Austin	А	100	mL	100	mL	1	M104258		

Bryan	Lab:	
-------	------	--

635 Phil Gramm Blvd. Bryan, Texas 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

c-o-c# 295112

V-0023 R01

Chain-of-Custody & Analysis Request

	Client / Project Name:					* DEFINITIONS: DW - Drinking Water NP - Non-Potable Water S - Solid CM - Custody Maintained CTU - Custody Transfer Unbroken						USE C	ONLY (init	tials_Me)
	Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres.	Analysis Poguos	ted	Cooler ID	Bottle pH	Sub- contract	Lab ID #
2	M			Grab	DW	0.12L	St P	1, 5	Total Coliform & E.coli P/A		ret	from.	Marcana and Mar Marcana and Marcana and Marc	(0323000A
	MHII#3	10-3-19	14.000,0000,000,000,000,000,000,000,000,0	G	Þω	11	P	1	NOZ off CI Cond	FFE		bereinin on territoria and territoria	Ana	(032347-01A
	MHTT # 3	16-319		angeneration and an and an an an and an and an and an and an				Mariatifizziatoscituza k-ormanizzatoscep	Handness Mn No3	504 TDS				
									ME	1449-				
	By relinquishing the above samples accreditation will be subcontracted the method in the "Analysis Reques	s to Aqua-Tech, the cli to a NELAC certified la sted" column. The clie	ent agrees to the fol ab that is certified fo nt approves all meth	lowing terms. S r that method. (nod modification	amples will be Clients will be is documented	e analyzed by a notified of the s d by Aqua-Tech	method that is v subcontract lab's or the subcontra	vithin Aqua-T details. Othe act lab. A cu	ech Laboratories' NELAC fields of accredi r analytes not requiring accreditation will b rrent list of Aqua-Tech's NELAC fields of a	ation. Analytes req analyzed by a co creditation and oth	uiring a certil mpendial me ter methods a	ied method t thod. If a spe are available	hat is not withi acific method is on request.	n Aqua-Tech's fields of required, the client will note
	Relinquished by: (print & sign)	Client Client ATL Fie	ld 🔲 Sampler	Date 10-	3-19	Time	Sample Info all that apply Iced Chilled/Refrig Cust. Sealed Not Chilled	Rec'd by: (pr	int & sign) □ Client □ ATL Field	ther-	2000 - 2000	Date	Tir	Sample Info "X" all that apply ne
	Relinquished by: (print & sign)	Client CATL Fiel	d	Date		Time D		Rec'd by: (pr	mt&sign) □Client □ ATL Field			Date	Tin	
	Relinquished by: (print & sign)	Client DATL Field	larrival in Lab	Date		Time D		Rec'd by: (pri Kelly	nt & sign) BReceived in Lab Kukowski		*****	Date	5-19 / 5	
	Field Sample ID	Time pH	D.O.		Flow	Apex Drill PO Box 8			D	Client Co	nments:			
						Phone: 83 Fax: 830-	30-798-273 798-2703	9						
4	pH Paper ID#:		C (not frozen)	2 = H ₂ SO.	4		3 = HCI		4 = HNO3	Laboratory	Commen	ts:		
	eldure S = Na ₂ S ₂ O ₃	6 = NaOH		7 =			8 =		9 =					
1	Line below documents condition at r color ID: Temp °C: S: 7	eceipt in Laboratory by CT	Therm ID:	Lab location r S7こ	Cooler ID:		C-O-C.) Temp ºC:	/	CT Therm ID:					

Email information for report date: 10/25/19 08:51

C032347

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

TCEQ DW Lab ID TX 239

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 13 C032347 1 ATL 102219 FIN Is 10 25 19 0851

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Austin, TX 78735 Bryan, TX 77807 **Report Printed:** 10/25/19 8:51 Phone: (979) 778-3707 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C032347 C-O-C # Matrix **MAJESTIC HILLS II NO3** Collected: 10/03/19 12:00 by CLIENT Type Received: 10/03/19 15:00 by Kelly Kukowski Grab **Drinking Water** 295112 Lab ID# C032347-01 Result Units Notes MDL Adi MDL SQL Lab Analyzed Method Batch General Chemistry **Total Dissolved Solids** 682 mg/L 25.0 50.0 50.0 Bryan 10/04/19 15:15 MRH SM2540 C 2011 M104302 NEL 0.0200 10/09/19 15:35 AEL SM4500-NO3-F 2011 Nitrate as N (NO3N) < 0.0200 mg/L 0.0200 Austin [CALC] NEL Nitrite as N <0.01 SM4500 NO2- B 2011 J (0.003) 0.002 0.002 0.01 Austin 10/04/19 07:58 AEL mg/L M104263 NEL Nitrate/Nitrite as N 0.02 mg/L 0.02 0.02 0.02 Bryan 10/09/19 15:35 MRB SM4500-NO3-F 2011 M104470 INF Total Hardness (EDTA) as CaCO3 545 mg/L 1.00 1.00 1.00 Bryan 10/09/19 11:12 MRH SM2340 C 2011 M104463 NEL Fluoride 0.77 0.04 0.04 0.10 10/08/19 14:15 PNS SM4500-F C 2011 mg/L Brvan M104397 NEL pH, Lab 7.6 S.U. Hold-03 N/A N/A Austin 10/04/19 12:24 KT SM4500-H+ B 2011 M104292 DWP Temperature @ pH Analysis 19.6 Deg. C N/A N/A 10/04/19 12:24 KT SM4500-H+ B 2011 Austin M104292 DWP Specific Conductance (adjusted to 808 uS/cm 2.00 2.00 2.00 Bryan 10/09/19 10:52 CJO SM2510 B 2011 M104456 DWP,NEL 25.0°C) Metals (Total) 0.245 Iron mg/L 0.002 0.001 0.005 Bryan 10/11/19 16:50 PNS EPA 200.7 R4.4 M104459 NEL Manganese 7.67 **RPD-01** 0.108 0.135 0.500 Bryan 10/17/19 12:20 MRG EPA 200.8 R5.4 ug/L M104409 NEL General Chemistry Sulfate as SO4 256 mg/L 0.01 3 3 Sub 10/07/19 17:24 ANA EPA 300.0 SUB NEL Chloride 11.3 mg/L 0.01 3 Sub 10/07/19 17:24 ANA EPA 300.0 NEL SUB **Explanation of Notes** Hold-03 This parameter was outside of EPA holding at the time the sample was received in the laboratory. .1 Analyte detected below the SQL but above the MDL.

RPD-01 Duplicate RPD is outside acceptable range. Acceptance of run is not based on matrix QC.

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 10/25/19 8:51

Report Printed:

C032347

				(General (Chemistry - Quality C	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Fluoride - SM4500-I	F C 2011													Bryan
Initial Cal Check	0.32	mg/L				10/08/19 14:15 PNS	0.356		91.0	90 - 110			1910086	
Blank	<0.10	mg/L		0.04	0.10	10/08/19 14:15 PNS							M104397	
LCS	0.73	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798		91.9	90 - 110			M104397	
LCS Dup	0.73	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798		91.9	90 - 110	0.00	6.23	M104397	
Matrix Spike	4.20	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798	3.45	93.9	78.1 - 125			M104397	
Matrix Spike Dup	4.22	mg/L		0.04	0.10	10/08/19 14:15 PNS	0.798	3.45	96.4	78.1 - 125	2.63	5.72	M104397	
MRL Check	<0.10	mg/L	J (0.09)	0.04	0.10	10/08/19 14:15 PNS	0.0998		90.3	73.4 - 118			M104397	
Nitrate/Nitrite as N	- SM4500-N	O3-F 2011												Bryan
Initial Cal Check	1.27	mg/L				10/09/19 15:35 MRB	1.15		110	90 - 110			1910106	
Low Cal Check	0.02	mg/L				10/09/19 15:35 MRB	0.0200		115	70 - 130			1910106	
Blank	<0.02	mg/L		0.02	0.02	10/09/19 15:35 MRB							M104470	
LCS	0.52	mg/L		0.02	0.02	10/09/19 15:35 MRB	0.500		104	91.3 - 109			M104470	
LCS Dup	0.51	mg/L		0.02	0.02	10/09/19 15:35 MRB	0.500		101	91.3 - 109	3.14	6.8	M104470	
Matrix Spike	0.82	mg/L		0.02	0.02	10/09/19 15:35 MRB	0.500	0.28	109	94.1 - 111			M104470	
Matrix Spike Dup	0.82	mg/L		0.02	0.02	10/09/19 15:35 MRB	0.500	0.28	109	94.1 - 111	0.00	8.65	M104470	
Nitrite as N - SM450	00 NO2- B 2	011												Austin
Initial Cal Check	0.07	mg/L				05/29/19 12:06 KT	0.0725		102	90 - 110			1905274	
Blank	<0.01	mg/L		0.002	0.01	10/04/19 07:58 AEL							M104263	
LCS	0.08	mg/L		0.002	0.01	10/04/19 07:58 AEL	0.0800		98.3	90 - 110			M104263	
LCS Dup	0.08	mg/L		0.002	0.01	10/04/19 07:58 AEL	0.0800		97.9	90 - 110	0.448	8.12	M104263	
Matrix Spike	0.08	mg/L		0.002	0.01	10/04/19 07:58 AEL	0.0800	<0.01	94.3	70.6 - 117			M104263	
Matrix Spike Dup	0.07	mg/L		0.002	0.01	10/04/19 07:58 AEL	0.0800	<0.01	93.0	70.6 - 117	1.41	8.18	M104263	
MRL Check	0.01	mg/L		0.002	0.01	10/04/19 07:58 AEL	0.0100		100	70 - 130			M104263	
pH, Lab - SM4500-H	I+ B 2011													Austin
Duplicate	7.6	Std Units				10/04/19 12:24 KT		7.6			0.132	2.05	M104292	
Reference	6.9	Std Units				10/04/19 12:24 KT	6.86		100	95 - 105			M104292	
Reference	9.1	Std Units				10/04/19 12:24 KT	9.18		99.6	95 - 105			M104292	
Reference	6.9	Std Units				10/04/19 12:24 KT	6.86		101	95 - 105			M104292	
Reference	9.1	Std Units				10/04/19 12:24 KT	9.18		99.5	95 - 105			M104292	
Specific Conductan	nce (adjuste	d to 25.0°C) - S	M2510 B 2011											Bryan
Initial Cal Check	490	uS/cm				10/09/19 10:52 CJO	472		104	85 - 115			1910103	
Blank	<2.00	uS/cm		2.00	2.00	10/09/19 10:52 CJO							M104456	
Duplicate	1100	uS/cm		2.00	2.00	10/09/19 10:52 CJO		1110			0.0905	2	M104456	
LCS	1410	uS/cm		2.00	2.00	10/09/19 10:52 CJO	1410		99.9	90 - 110			M104456	

Form: C:\ELMNT\FORMAT\ATL 102219 FIN_LS.RPT

Page 3 of 13 C032347_1 ATL 102219 FIN_ls 10 25 19 0851

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Report Printed: 10/25/19

8:51 C032347

Apex Drilling

					General C	Chemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Total Dissolved Sol	lids - SM254	0 C 2011												Bryan
Blank	<25.0	mg/L		25.0	25.0	10/04/19 15:15 MRH							M104302	
Duplicate	500	mg/L		50.0	50.0	10/04/19 15:15 MRH		490			2.02	9.13	M104302	
Reference	452	mg/L		100	100	10/04/19 15:15 MRH	500		90.4	81 - 121			M104302	
Total Hardness (ED	TA) as CaC	O3 - SM2340	C 2011											Bryan
Blank	<1.00	mg/L		1.00	1.00	10/09/19 11:12 MRH							M104463	
Duplicate	2.00	mg/L		1.00	1.00	10/09/19 11:12 MRH		2.00			0.00	9.52	M104463	
LCS	100	mg/L		1.00	1.00	10/09/19 11:12 MRH	100		100	90 - 110			M104463	
LCS Dup	97.0	mg/L		1.00	1.00	10/09/19 11:12 MRH	100		97.0	90 - 110	3.05	6.47	M104463	
Matrix Spike	102	mg/L		1.00	1.00	10/09/19 11:12 MRH	100	2.00	100	87.6 - 111			M104463	
MRL Check	2.00	mg/L		1.00	1.00	10/09/19 11:12 MRH	4.00		50.0	50 - 150			M104463	
Initial Cal Check	54.0	mg/L				10/10/19 09:43 MRH	54.4		99.3	85 - 115			1910120	
					Metals	(Total) - Quality Cont	trol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Iron - EPA 200.7 R4	4													Brvan

Iron - EPA 200.7 I	R4.4													Bryan
Blank	<0.005	mg/L		0.001	0.005	10/11/19 16:33 PNS							M104459	
LCS	0.454	mg/L		0.001	0.005	10/11/19 16:36 PNS	0.500		90.7	84.5 - 115.4			M104459	
LCS Dup	0.470	mg/L		0.001	0.005	10/11/19 16:40 PNS	0.500		94.0	84.5 - 115.4	3.53	20	M104459	
Duplicate	0.386	mg/L		0.001	0.005	10/11/19 16:43 PNS		0.402			3.92	20	M104459	
Matrix Spike	0.883	mg/L		0.001	0.005	10/11/19 16:46 PNS	0.500	0.402	96.4	69.5 - 130.4			M104459	
Manganese - EPA	200.8 R5.4													Bryan
Blank	<0.500	ug/L		0.135	0.500	10/17/19 10:28 MRG							M104409	
LCS	5.29	ug/L		0.135	0.500	10/17/19 11:10 MRG	5.00		106	84.5 - 115.4			M104409	
LCS Dup	5.58	ug/L		0.135	0.500	10/17/19 11:20 MRG	5.00		112	84.5 - 115.4	5.35	20	M104409	
Matrix Spike	6.89	ug/L		0.135	0.500	10/17/19 11:40 MRG	5.00	3.14	74.9	69.5 - 130.4			M104409	
Duplicate	2.24	ug/L	RPD-01	0.135	0.500	10/24/19 01:54 MRG		3.14			33.4	20	M104409	

					Prepa	ration	Procedures - Quality	Control						
	Result	Units	Notes	MD	L	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch
Turbidity - SM2130	B 2011													Bryan
Initial Cal Check	6.1	NTU					10/02/19 10:00 MRH	6.55		92.8	90 - 110			1910020
Low Cal Check	1.1	NTU					10/02/19 10:00 MRH	1.02		110	70 - 130			1910020

Page 4 of 13 C032347_1 ATL 102219 FIN_ls 10 25 19 0851

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707

Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Ap Report Printed: 10/25/19

8:51 C032347

Apex Drilling

		Sample Prep	aration Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C032347-01										
Fluoride	SM4500-F C 2011	10/8/19 14:15 PNS	Bryan	А	25.0	mL	25.0	mL	1	M104397
Iron	EPA 200.7 R4.4	10/9/19 10:58 AKS	Bryan	С	50.0	mL	25.0	mL	1	M104459
Manganese	EPA 200.8 R5.4	10/8/19 13:10 AOG	Bryan	С	50.0	mL	25.0	mL	2.5	M104409
Nitrate/Nitrite as N	SM4500-NO3-F 2011	10/9/19 11:34 MRB	Bryan	Е	10.0	mL	10.0	mL	1	M104470
Nitrite as N	SM4500 NO2- B 2011	10/4/19 7:58 AEL	Austin	D	25.0	mL	25.0	mL	1	M104263
pH, Lab	SM4500-H+ B 2011	10/4/19 12:24 KT	Austin	D	50.0	mL	50.0	mL	1	M104292
Sample Acidified to pH<2 in Lab	N/A	10/3/19 15:35 KK	Bryan	С	100	mL	100	mL	1	M104235
Specific Conductance (adjusted to 25.0	°C)SM2510 B 2011	10/9/19 10:52 CJO	Bryan	А	25.0	mL	25.0	mL	1	M104456
Temperature @ pH Analysis	SM4500-H+ B 2011	10/4/19 12:24 KT	Austin	D	50.0	mL	50.0	mL	1	M104292
Total Dissolved Solids	SM2540 C 2011	10/4/19 15:15 MRH	Bryan	А	50.0	mL	100	mL	1	M104302
Total Hardness (EDTA) as CaCO3	SM2340 C 2011	10/9/19 11:12 AKS	Bryan	С	50.0	mL	50.0	mL	1	M104463
Turbidity	SM2130 B 2011	10/4/19 8:59 MRH	Bryan	С	10.0	mL	10.0	mL	1	M104281
See sub-contract reports for preparation	n information of subcontracted analyses.									
C032347-01RE1										
Sample Acidified to pH<2 in Lab	N/A	10/3/19 15:35 KK	Bryan	E	100	mL	100	mL	1	M104242

Bryan	Lab:	
-------	------	--

635 Phil Gramm Blvd. Bryan, Texas 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

c-o-c# 295112

V-0023 R01

Chain-of-Custody & Analysis Request

	Client / Project Name:					* DEFINITI	ONS: DW - Drin CM - Cus	king Water tody Maintair	NP - Non-Potable Water ed CTU – Custody Transfer Unbroken	S – Solid	LAE	BUSE C	ONLY (ini	tials)
	Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres.	Analysis Reques	ted	Cooler ID	Bottle pH	Sub- contract	Lab ID #
2	M			Grab	DW	0.12L	St P	1, 5	Total Coliform & E.coli P/A		ret	entere.	income and a second	(032370-0V
	MHII#3	10-3-19		G	DW	11	P	/	NOZ OHCI Cond.	FFE		benere and an	Ana	(032347-016
ł	MHTT # 3	10-3.19							Handness Mn No3	JO4 TDS				
									NFEB	144-				<u>.</u>
									ech Laboratories' NELAC fields of accredita r analytes not requiring accreditation will be rent list of Aqua-Tech's NELAC fields of ac					n Aqua-Tech's fields of s required, the client will note
	Relinquished by: (print & sign) E]Client □ ATL F	eld 🔲 Sampler	Date 10-	3-19		Sample Info (* all that apply Iced Chilled/Refrig Cust. Sealed Not Chilled	Rec'd by: (pr	int & sign) □ Client □ ATL Field	<u>Fer</u>		Date	Ti	Sample Info "X" all that apply me Rec'd Chilled Cond Good CTU" CU"
	Refinquished by: (print & sign)	Client CATL Fi	eld	Date		Time D	and the second	Rec'd-b y: (pri	nt & sign) Client ATL Field	****	02000-100-000-000-00-00-000	Date	Tir	ne DRec'd Chilled Cond Good CTU * Diced in Transit
1	Relinquished by: (print & sign)	Client DATL Eic	ld arrival in Lab	Date		Time D		Rec'd by: (pri Kelly	nt & sign) Effeceived in Lab			Date	5-19 /1	
	Field Sample ID	Time pH	D.O.	Cl ₂	Flow	Apex Drill PO Box 8			D	Client Cor	nments:			
						Phone: 83 Fax: 830-	30-798-273 798-2703	9						
4	pH Paper ID#:	1 ≤ 6	°C (not frozen)	2 = H ₂ SC)q		3 = HCI		4 = HNO3	Laboratory	Commer	nts:		
	9 5 = Na ₂ S ₂ O ₃	6 = NaOH		7 =			8 =		9 =					
	ine below documents condition at condition at the second s		T Therm ID:	n. Lab location	Cooler ID:		C-O-C.) Temp ºC:		CT Them ID:					

LELAP-accredited #02008

Report

Account

Project

AQU5-C

3 4 5

2

Table of Contents

Printed 10/10/2019

Page 1 of 1

2

6

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

		892786	
Т	his report consists of this Table of Contents and the following pages:		
<u>Report Name</u> 892786_r03_03_ProjectResults	Description Ana-Lab Project P:892786 C:AQU5 Project Results t:304		Pages 1
892786_r03_06ProjectTRRP	Ana-Lab Project P:892786 C:AQU5 Project TRRP Results Report for Class		2
892786_r10_05_ProjectQC	Ana-Lab Project P:892786 C:AQU5 Project Quality Control Groups		1

892786_r99_09_CoC__1_of_1

Total Pages:

Ana-Lab CoC AQU5 892786_1_of_1

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662 ACCOR,

NELAP-accredited #T104704201-19-15

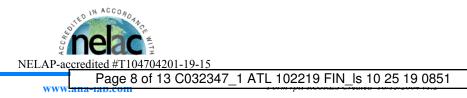
Page 7 of 13 C032347_1 ATL 102219 FIN_Is 10 25 19 0851 Phone 903/984

	Ana-Lab Corp.	P.O. Box 9000	Kilgore, TX 75663	Rep	oort Page 2 of 7
ANALAD	Phone 903/984-0551 FAX	X 903/984-5914 e-Mail con Employee Owned Integ		rovement	
CORP.	Results	Printed: 10/10/2019	21:21		Page 1 of 1 892786
Report To			Account AQU5-C		
Aqua-Tech Laboratories (Austi John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	n				
		Results			
1826417 C032347-01 Drinking Water	<i>Collected by:</i> Client <i>Taken:</i> 10/03/2019 12	Aqua-Tech Laborato 2:00:00	ri	Received: PO:	10/05/2019

	EPA 300.0 2.1	Prepared:	862716 10.	/07/2019	17:24:00	Analyzed 862710	5 10/07/2019	17:24:00 ATN
	Parameter	Results	Units	RL		Flag	CAS	Bottle
Ν	Chloride	11.3	mg/L	3.00				01
Ν	Sulfate	256	mg/L	3.00				01
N	Sulfate	256	mg/L	3.00				01

Qualifiers:

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation.


These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

1

4 5

	Ana-Lab Corp.	P.O. Box 9000	Kilgore, T	X 75663						Report	aye 3 01 7
ANALAB I	Phone 903/984-0551 F	AX 903/984-5914 e-Mail	corp@ana-lab.co	m				LELAP-ac	credited #02	2008	
THE COMPLETE SERVICE LAB		Result	s Sum	mary	T			^{10/2019}	Page 1 of 2	² 892786	
Aqua-Tech Laboratories (A John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	ustin			DW							
<u>CAS</u>	Parameter		Results	MDL	SDL	MQL	MQLAdj	Flag Units	Target	Bottle	Dilute
Drinking Water	r	Ion Chromatog	aphy				EP	A 300.0 2.1			
<mark>1826417</mark>	C032347-01										
			Collection:	10/03/20	19	12:00:00	Client		Received:	10/05/2	2019
Prepa	ared: 862716							_			
					Analyzed:		862716	10/7/19	17:24:00		
	Chloride		11.3	0.0053	0.053	0.300	3.00	mg/L	250 Secondary Standard	01	10.00
	Sulfate		256	0.00775	0.0775	0.300	3.00	mg/L	250 Secondary Standard	01	10.00
MDL is Method Det	ection Limit (40 CFR 136 Appen	dix B)			SDL is Sample	e Detection Limi	t and is the adjusted	MDL (sample spe	cific dilutions (dry weight)	
	Quantitation Limit and correspon				SEE 13 Sumply		DJ is the Adjusted N	· · ·			

Qualifiers:

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation. These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

1

2

4

5

Results Summary

DW

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

Bill Poor

Bill Peery, MS, VP Technical Services

LELAP-accredited #02008

Page 2 of 2

Printed 10/10/2019

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

LDSClient v1.14.41.1837

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

. 1.//02000	1.4.		FX 756	<i>.</i>	0			. P.C	· · ·		
ted #02008		LELAP- ual Improvem			<i>a</i>) ana-lab Car	e-Mail corp@ Integrity		X 903/98 ployee O		Phone 903/984	ILAD 7
Page 1 of 1 892786		019	d 10/10/2	Printed	P)1	ntro	/ Co	uality	Qı	PLETE SERVICE LAB
			count	Acc							port To
			U5-C	AQ							a-Tech Laboratories (A
]								ISUII	n Brien Phil Gramm Blvd. an, TX 77807-9104
EPA 300.0 2.										862716	Analytical Set
							Blank				
		File				Units	MQL	MDL	Reading	PrepSet	<u>Parameter</u>
		120471516				mg/L	0.300	0.0053	0.129	862716	Chloride
		120471516				mg/L	0.300	0.00775	ND	862716	Sulfate
							CCV				
		File			Limits%	Recover%	Units	Known	Reading		Parameter
		120471512)	90.0 - 110	103	mg/L	10.0	10.3		Chloride
		120471526		,	90.0 - 110	105	mg/L	10.0	10.5		
		120471541		1	90.0 - 110	103	mg/L	10.0	10.3		
		120471512		1	90.0 - 110	102	mg/L	10.0	10.2		Sulfate
		120471526		1	90.0 - 110	103	mg/L	10.0	10.3		
		120471541)	90.0 - 110	102	mg/L	10.0	10.2		
						ıp	LCS Du				
RPD Limit%	nits	LCSD%	CS%	LC	Limits%	Known		LCSD	LCS	PrepSet	<u>Parameter</u>
1.40 20.0	g/L	101	.4) 99.4	85.0 - 110	5.00		5.04	4.97	862716	Chloride
0.794 20.0	g/L (101	0) 100	88.0 - 110	5.00		5.06	5.02	862716	Sulfate
							MSD				
RPD Limit%	nits	MSD%	IS%	M	Limits	Known	UNK	MSD	MS	Sample	<u>Parameter</u>
0 20.0	g/L	92.0	.0	92.0	80.0 - 120	50.0	144	190	190	1825671	Chloride
2.47 20.0	g/L 2	80.0	.0	82.0	80.0 - 120	50.0	198	238	239	1825671	Sulfate
2.47 20.0											
4.88 20.0	g/L 4	84.0	.0) 80.	80.0 - 120	50.0	106	148	146	1825773	Chloride

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank; CCV - Continuing Calibration Verification

ACCOA

NELAP-accredited #T104704201-19-15

ACO.A

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Page 11 of 13 C032347_1 ATL 102219 FIN_Is 10 25 19 0851

1 of 2

ATI. - Bryan Facility: 635 Phil Gramm Blvd. Bryan, TX 77807 (979) 778-3707 Fax (9/9) 778-3193 Analysis Request for: All analyses must be performed by a TNI approved method certified by the TCEQ. Contact ATL's sample custodian via voice and email if your methods do not meet this criteria. **QUA-TECH** LABORATORIES, INC. ATI - Austin Facility /500 Hwy 71 W, Suite 195 Austin, TX 78735 (\$12) 301-9559 Fax (\$12) 301-9552 Sample ID: C032347-01 SO4 DW - EPA 300.0 Ana-Lab Corp. (NELAP Cert. T104704201) 2600 Dudley Road Kilgore, TX 75662 Phone: (903) 984-0551 Fax: (903) 984-5914 SHIPPED TO: Sampled: 10/03/19 12:00 Chain-of-Custody & Analysis Request Matrix: Drinking Water 114 - C032347 Laboratory ID >> 0-0-0 # (420417 Page 1 of 1 T104704371

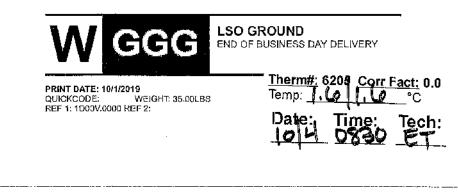
CONTAINERS SUPPLIED: Chloride - EPA 300.0) C032347-01 [B] - CI SO4 0.5LP (ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.)

892786 CoC Print Group 001 of 001

BRET		ţ	Austin Facility	A		N/A	N/A	N/A
		r(n) to:	Please return cooler(a) to:	P lease				Cooler 1
		\$-00m	corp@aqua-techlabs.com	Bidsoo	ີ ມີເຊິ່າເຊິ່າເປັ	Consected Temp. (CT)	Temp. Reed (TR)	Cooler enperature (*C)
		ts to:	F lease email reports to:	Pleas	listed above.	Line below documents condition at receipt in lab (shipped to) listed above	its condition at rece	Line below documer
		Non Rec'o load	0180 6/14	10/4/19			a-Lab	Kethy Tarver Ane-Lab
	5 DAY TAT	ived lose	Time	Date	[Arconved in table	Racewed by: (print & sign)
cial Instructions	Aqua-Tech Comments and Special Instructions	Sample Lito "X" af that spoly		ΧS S	Cooper 1: aquo - ZyuTopks			Lone Star
iP-Liter Plastic LC-Liter Glass	S. Scilia CTU - Custody Transfor Unoncen LG - Liter Planti CTU - Custody Transfor Unoncen LG - Liter Gass		5131	10/3/19		2 M		Kelly Kukowski ^{Carrier® Tacking Number,}
	Abbreviations: NY - Drinking Water	Listed Seeled	Ťæ	Cate	Sampler	ุ่∧≀∟ อญชา	X ATL-Austin	Relinquished by: (print & sign)

2 of 2

892786 CoC Print Group 001 of 001


10/1/2019 Dttps://www.iso.com/webiabels//iabelsize=uacombinediabels/racessionikey=%/84671/400-0007-4349-5068-0011)FGC28064%/10

1-800-800-8984 www.lso.com

LSO

SHIP TO: RECEIVING ANA LAB CORP 2600 DUDLEY RD KILGORE, TX 75662 9039840551 Fram: KE-LIY KUKOWSKI AQUA-TECH LABORATORIES, INC. 7500 W HWY 71 SUITE 105 AUSTIN, TX 78735 5123019559

Fold on above line and place shipping label in pouch on package. Please be sure the barcodes and addresses can be read and soanned. Shipping Instructions

- 1. Fold this page along the horizontal line above.
- Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To locate a drop box near you, click on Find A Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone Star Overnight account number.

This labet is valid for use for 3 months from the date printed. Use of expired labels may result in delayed billing and / or additional research charges. LIMIT OF EIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) dockre a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss in a timely manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a package without obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR \$30 AM DELIVERIES OR RESIDENTIAL DELIVERIES.

Water Quality

Well No. 4

Email information for report date: 10/2/19 12:44

10/2/19 12:44

C031260

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brien June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 3 C031260 2 ATL 030419 FIN Is 10 02 19 1244

TCEQ DW Lab ID TX 239

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Bryan, TX 77807 Austin, TX 78735 Phone: (979) 778-3707 **Report Printed:** 10/2/19 12:44 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C031260 Collected: 09/24/19 11:00 by CLIENT C-O-C # Type Matrix **MAJESTIC HILLS II NO4** Received: 09/24/19 16:00 by Kelly Kukowski Grab **Drinking Water** 294952 Lab ID# C031260-01 Result Units Notes MDL Adj MDL SQL Lab Analyzed Method Batch Microbiological Analyses Total Coliforms Absent N/A N/A N/A N/A Austin 09/24/19 16:35 JLL SM9223 B 2004 M103821 NEL Escherichia coli (E.coli) N/A N/A N/A N/A Austin 09/24/19 16:35 JLL SM9223 B 2004 Absent M103821 NEL C-O-C # **MAJESTIC HILLS II NO10** Collected: 09/24/19 11:30 by CLIENT Туре Matrix Received: 09/24/19 16:00 by Kelly Kukowski Grab **Drinking Water** 294952 Lab ID# C031260-02 Units Notes MDL Adj MDL SQL Method Result Lab Analyzed Batch Microbiological Analyses **Total Coliforms** Absent N/A N/A N/A SM9223 B 2004 N/A 09/24/19 16:35 JLL Austin M103821 NEL Escherichia coli (E.coli) Absent N/A N/A N/A N/A Austin 09/24/19 16:35 JLL SM9223 B 2004 M103821 NEL

				Micr	obiologi	cal Analyses - Quality	y Control				Log10 C	omparison		
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli	(E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	09/24/19 16:35 JLL							M103821	
Total Coliforms -	SM9223 B 200)4												Austin
Blank	Absent	N/A		N/A	N/A	09/24/19 16:35 JLL							M103821	

	Sample Preparation Summary											
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Dilution Factor	Batch		
C031260-01												
Escherichia coli (E.coli)	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821		
Total Coliforms	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821		
C031260-02												
Escherichia coli (E.coli)	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821		
Total Coliforms	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821		

Chain-of-Custody & A		635 Pt Bryan, Phone	n Lab: Lab: Lab: nil Gramm Blvo Texas 77807 : (979) 778-37 979) 778-3193	707	7500 V Austin Phone	in Lab: N. Hwy. 71, S , Texas 78735 :: (512) 301-95 corp@aqua-t	5 559	с-о-с# 2949	152		al and a second se	THI ANTONY	≋ V-0023 R01
Client / Project Name:					* DEFINITIO	DNS: DW - Drin CM Cus	king Water tody Maintain		S – Solid	LAB	USE ONL	Y (initials	Khe)
Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres.	Analysis Requeste		Cooler ID		Sub- ontract	Lab ID #
MIH EL	 Application of the limit of an article strategy and the second strategy and strategy and the second strategy and strategy and the second		Grab	DW	0.12L	St P	1, 5		NARK			10.000 (constraints) (constraints) (constraints) (constraints) (constraints) (constraints) (constraints) (const	danamatan kana sa kana
" EL	9-24-19	11:00		ØW	11	ρ		SEC 47 Mn NO3 NO	3 SUYDS	of/	- <u>ci</u> soy	Any Co	31243-01A
MUTT 4. U	9-24-18	11:00	C 14	OW	0.12L	Str	15	Boit.		07			014
MITANID	9.24.19	11:30	17	DW	NAL	STP	1.5	BACT		7	and the second	í (î	121-07A
1HH GO		71.00	ľ		1 Miles			มและและไม่ได้และครามมีเสียงเห็นของการการการการการการการการการการการการการก	a south sub or conversion of the				an an ann an Anna an An Anna an Anna an A
								NEEKS					agamiento antico de la construcción
	Client OATL Fi	əld arrival in Lab	Date 9.4 Date Date Cl ₂	24.19	Time		Rec'd by: (pr Kelly	Int & sign) Client BATL Field Int & sign) CReceived in Lab Kukowski	Uient Co	mments:	Date Date Date G /ZU	Time Time 19 160	*X" all that ap Rec"d Chille C ond Good CTU * I cod in Tran Rec"d Chille C ond Good CTU * I cod in Tran Prec"d Iced Not Rec"d Iced Prec"d Iced Prec"d Cod Prec"d
					Phone: 8	alls, TX 78 330-798-27 -798-2703			Laborator	v Commei	nis		
pH Paper ID#:	1 ≤ ($3 {}^{\mathrm{o}}\mathrm{C}$ (not frozen)	2 = H ₂ S	₩¥		3 = HCI		4 = HNU3		,			
5 = Na ₂ S ₂ O ₃ (Line below documents condition at	6 = NaOH		7 = ian. Lab location	n noted by che	eck box at top o	8 = of C-O-C.) Temp °C:		9 =					

Email information for report date: 11/6/19 06:01

C031243

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls. TX 78654

Submission forms:

Due to updates by TCEQ, the submission form used for Drinking Water Revised Coliform Rule has been updated. Please contact us if you need a copy of this new Chain of Custody form.

Aqua-Tech values you as a customer and encourages you to speak with our sampling staff at 979-778-3707 option 2 or samplingbryan@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brien June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 15 C031243 1 ATL 103119 FIN Is 11 06 19 0601

TCEQ DW Lab ID TX 239

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Austin, TX 78735 Bryan, TX 77807 **Report Printed:** 11/6/19 6:01 Phone: (979) 778-3707 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C031243 C-O-C # Matrix **MAJESTIC HILLS II NO4** Collected: 09/24/19 11:00 by CLIENT Type Received: 09/24/19 16:00 by Kelly Kukowski Grab **Drinking Water** 294952 Lab ID# C031243-01 Result Units Notes MDL Adi MDL SQL Lab Analyzed Method Batch General Chemistry **Total Dissolved Solids** 1380 mg/L 25.0 50.0 50.0 Bryan 09/25/19 12:46 MRH SM2540 C 2011 M103859 NEL 0.0200 0.0200 10/01/19 13:19 JLL SM4500-NO3-F 2011 Nitrate as N (NO3N) < 0.0200 mg/L Austin [CALC] NEL Nitrite as N <0.01 SM4500 NO2- B 2011 J (0.002) 0.002 0.002 0.01 Austin 09/25/19 10:14 JLL mg/L M103849 NEL Nitrate/Nitrite as N < 0.02 mg/L 0.02 0.02 0.02 Bryan 10/01/19 13:19 MRB SM4500-NO3-F 2011 M104095 INF Total Hardness (EDTA) as CaCO3 980 mg/L 1.00 1.00 1.00 Bryan 10/03/19 10:26 MRH SM2340 C 2011 M104215 NEL Fluoride 0.94 0.04 0.04 0.10 10/01/19 13:42 PNS SM4500-F C 2011 mg/L Brvan M104093 NEL pH, Lab 7.3 S.U. Hold-03 N/A N/A Austin 09/27/19 09:30 MSA SM4500-H+ B 2011 M103978 DWP Deg. C Temperature @ pH Analysis 21.1 N/A N/A Austin 09/27/19 09:30 MSA SM4500-H+ B 2011 M103978 DWP Specific Conductance (adjusted to 1610 uS/cm 2.00 2.40 2.40 Bryan 09/26/19 13:24 CJO SM2510 B 2011 M103944 DWP,NEL 25.0°C) Metals (Total) 0.062 Iron mg/L 0.002 0.001 0.005 Bryan 10/01/19 20:47 PNS EPA 200.7 R4.4 M103946 NEL Manganese 1.75 **RPD-01** ug/L 0.108 0.135 0.625 Bryan 10/02/19 19:32 MRG EPA 200.8 R5.4 M104100 NEL General Chemistry Sulfate as SO4 624 mg/L 0.01 30 30 Sub 09/27/19 20:59 ANA EPA 300.0 SUB NEL Chloride 14.7 mg/L D* 0.02 3 Sub 09/26/19 09:59 ANA EPA 300.0 NEL SUB **Explanation of Notes** D* Duplicate RPD was higher than expected Hold-03 This parameter was outside of EPA holding at the time the sample was received in the laboratory.

J Analyte detected below the SQL but above the MDL.

RPD-01 Duplicate RPD is outside acceptable range. Acceptance of run is not based on matrix QC.

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 11/6/19

Report Printed:

C031243

6:01

				C	General C	Chemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Fluoride - SM4500-I	C 2011													Bryan
Initial Cal Check	0.34	mg/L				10/01/19 13:42 PNS	0.356		95.5	90 - 110			1910003	
Blank	<0.10	mg/L		0.04	0.10	10/01/19 13:42 PNS							M104093	
LCS	0.77	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798		96.9	90 - 110			M104093	
LCS Dup	0.78	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798		97.7	90 - 110	0.772	6.23	M104093	
Matrix Spike	3.14	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798	2.35	98.9	78.1 - 125			M104093	
Matrix Spike Dup	3.14	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798	2.35	98.9	78.1 - 125	0.00	5.72	M104093	
MRL Check	<0.10	mg/L	J (0.09)	0.04	0.10	10/01/19 13:42 PNS	0.0998		90.7	73.4 - 118			M104093	
Nitrate/Nitrite as N	SM4500-NG	D3-F 2011												Bryan
Initial Cal Check	1.23	mg/L				10/01/19 13:19 MRB	1.15		107	90 - 110			1910005	
Low Cal Check	0.02	mg/L				10/01/19 13:19 MRB	0.0200		118	70 - 130			1910005	
Blank	<0.02	mg/L		0.02	0.02	10/01/19 13:19 MRB							M104095	
LCS	0.50	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500		99.9	91.3 - 109			M104095	
LCS Dup	0.50	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500		99.5	91.3 - 109	0.326	6.8	M104095	
Matrix Spike	0.59	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500	0.06	107	94.1 - 111			M104095	
Matrix Spike Dup	0.58	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500	0.06	105	94.1 - 111	1.88	8.65	M104095	
Nitrite as N - SM450	0 NO2- B 2	011												Austin
Initial Cal Check	0.07	mg/L				05/29/19 12:06 KT	0.0725		102	90 - 110			1905274	
Blank	<0.01	mg/L		0.002	0.01	09/25/19 10:14 JLL							M103849	
LCS	0.08	mg/L		0.002	0.01	09/25/19 10:14 JLL	0.0800		106	90 - 110			M103849	
LCS Dup	0.09	mg/L		0.002	0.01	09/25/19 10:14 JLL	0.0800		109	90 - 110	2.45	8.12	M103849	
Matrix Spike	0.08	mg/L		0.002	0.01	09/25/19 10:14 JLL	0.0800	0.002	95.7	70.6 - 117			M103849	
Matrix Spike Dup	0.08	mg/L		0.002	0.01	09/25/19 10:14 JLL	0.0800	0.002	94.8	70.6 - 117	0.924	8.18	M103849	
MRL Check	0.01	mg/L		0.002	0.01	09/25/19 10:14 JLL	0.0100		114	70 - 130			M103849	
pH, Lab - SM4500-H	+ B 2011													Austin
Duplicate	7.6	Std Units	Hold-03			09/27/19 09:30 MSA		7.6			0.262	2.05	M103978	
Reference	7.0	Std Units				09/27/19 09:30 MSA	6.86		101	95 - 105			M103978	
Reference	9.0	Std Units				09/27/19 09:30 MSA	9.18		98.6	95 - 105			M103978	
Reference	7.0	Std Units				09/27/19 09:30 MSA	6.86		102	95 - 105			M103978	
Reference	9.2	Std Units				09/27/19 09:30 MSA	9.18		99.8	95 - 105			M103978	
Specific Conductar	ce (adjuste	d to 25.0°C) - S	M2510 B 2011											Bryan
Initial Cal Check	479	uS/cm				09/26/19 13:24 CJO	472		101	85 - 115			1909272	
Blank	<2.00	uS/cm		2.00	2.00	09/26/19 13:24 CJO							M103944	
Duplicate	427	uS/cm		2.00	2.00	09/26/19 13:24 CJO		430			0.700	2	M103944	
					2.00									

Form: C:\ELMNT\FORMAT\ATL 103119 FIN_LS.RPT

Page 3 of 15 C031243_1 ATL 103119 FIN_ls 11 06 19 0601

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Ap Report Printed: 11/6/19

C031243

6:01

Apex Drilling

					General	Chemistry - Quality C	••••••							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Total Dissolved Sol	ids - SM254	0 C 2011												Bryan
Blank	<25.0	mg/L		25.0	25.0	09/25/19 12:46 MRH							M103859	
Duplicate	294	mg/L		50.0	50.0	09/25/19 12:46 MRH		292			0.683	9.13	M103859	
Reference	560	mg/L		100	100	09/25/19 12:46 MRH	500		112	81 - 121			M103859	
Total Hardness (ED	TA) as CaC	D3 - SM2340 (C 2011											Bryan
	TA) as CaC <1.00	D3 - SM2340 (mg/L	C 2011	1.00	1.00	10/03/19 10:26 MRH							M104215	Bryan
Total Hardness (ED	•		C 2011	1.00 1.00	1.00	10/03/19 10:26 MRH 10/03/19 10:26 MRH		980			0.00	9.52	M104215 M104215	Bryan
Total Hardness (ED Blank	<1.00	mg/L	C 2011				100	980	99.0	90 - 110	0.00	9.52		Bryan
Total Hardness (ED Blank Duplicate	<1.00 980	mg/L mg/L	C 2011	1.00	1.00	10/03/19 10:26 MRH	100 100	980	99.0 98.0	90 - 110 90 - 110	0.00	9.52 6.47	M104215	Bryan
Total Hardness (ED Blank Duplicate LCS	<1.00 980 99.0	mg/L mg/L mg/L	C 2011	1.00 1.00	1.00 1.00	10/03/19 10:26 MRH 10/03/19 10:26 MRH		980 980					M104215 M104215	Bryan
Total Hardness (ED Blank Duplicate LCS LCS Dup	<1.00 980 99.0 98.0	mg/L mg/L mg/L mg/L	C 2011	1.00 1.00 1.00	1.00 1.00 1.00	10/03/19 10:26 MRH 10/03/19 10:26 MRH 10/03/19 10:26 MRH	100		98.0	90 - 110			M104215 M104215 M104215	Bryan

					motalo	(rotal) datality con							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch
Iron - EPA 200.7 R4	4.4												Bryan
Blank	<0.005	mg/L		0.001	0.005	10/01/19 20:27 PNS							M103946
LCS	0.466	mg/L		0.001	0.005	10/01/19 20:30 PNS	0.500		93.1	84.5 - 115.4			M103946
LCS Dup	0.486	mg/L		0.001	0.005	10/01/19 20:33 PNS	0.500		97.1	84.5 - 115.4	4.19	20	M103946
Duplicate	0.170	mg/L		0.001	0.005	10/01/19 20:37 PNS		0.186			8.90	20	M103946
Matrix Spike	0.609	mg/L		0.001	0.005	10/01/19 20:40 PNS	0.500	0.186	84.5	69.5 - 130.4			M103946

CORPORATE OFFICE

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

6:01

Apex Drilling **Report Printed:** 11/6/19 C031243

					Metals	(Total) - Quality Cont	rol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Manganese - EPA	200.8 R5.4													Bryan
Blank	<0.625	ug/L		0.135	0.625	10/08/19 15:03 MRG							M104100	
LCS	5.24	ug/L		0.135	0.625	10/08/19 15:14 MRG	5.00		105	84.5 - 115.4			M104100	
LCS Dup	4.86	ug/L		0.135	0.625	10/08/19 15:25 MRG	5.00		97.2	84.5 - 115.4	7.48	20	M104100	
Duplicate	1.68	ug/L	RPD-01	0.135	0.625	10/08/19 15:36 MRG		1.14			38.3	20	M104100	
Matrix Spike	6.73	ug/L		0.135	0.625	10/08/19 15:47 MRG	5.00	1.14	112	69.5 - 130.4			M104100	
Blank	This result is not reported.	ug/L		0.135	0.625	10/25/19 14:14 MRG							M105007	
LCS	This result is not reported.	ug/L		0.135	0.625	10/25/19 14:24 MRG	5.00		77.9	84.5 - 115.4			M105007	
LCS Dup	This result is not reported.	ug/L		0.135	0.625	10/25/19 14:34 MRG	5.00		78.8	84.5 - 115.4	1.06	20	M105007	
Duplicate	This result is not reported.	ug/L		1.35	6.25	10/25/19 14:44 MRG		119			51.5	20	M105007	
Matrix Spike	This result is not reported.	ug/L		1.35	6.25	10/25/19 15:28 MRG	50.0	119	-3.97	69.5 - 130.4			M105007	
				Pre	paration	Procedures - Quality	Control							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Turbidity - SM213	0 B 2011													Bryan

CORPORATE OFFICE

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

11/6/19

Report Printed:

6:01 C031243

Apex Drilling

		Sample Prep	aration Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C031243-01										
Fluoride	SM4500-F C 2011	10/1/19 10:32 PNS	Bryan	А	10.0	mL	10.0	mL	1	M104093
Iron	EPA 200.7 R4.4	9/26/19 14:13 PNS	Bryan	С	50.0	mL	25.0	mL	1	M103946
Manganese	EPA 200.8 R5.4	10/1/19 12:45 AOG	Bryan	С	50.0	mL	25.0	mL	2.5	M104100
Nitrate/Nitrite as N	SM4500-NO3-F 2011	10/1/19 11:09 MRB	Bryan	Е	10.0	mL	10.0	mL	1	M104095
Nitrite as N	SM4500 NO2- B 2011	9/25/19 10:14 JLL	Austin	D	25.0	mL	25.0	mL	1	M103849
pH, Lab	SM4500-H+ B 2011	9/27/19 9:30 MSA	Austin	D	50.0	mL	50.0	mL	1	M103978
Sample Acidified to pH<2 in Lab	N/A	9/24/19 16:20 KK	Bryan	Е	100	mL	100	mL	1	M103856
Specific Conductance (adjusted to 25.0	°C) SM2510 B 2011	9/26/19 13:24 CJO	Bryan	А	25.0	mL	30.0	mL	1	M103944
Temperature @ pH Analysis	SM4500-H+ B 2011	9/27/19 9:30 MSA	Austin	D	50.0	mL	50.0	mL	1	M103978
Total Dissolved Solids	SM2540 C 2011	9/25/19 12:46 MRH	Bryan	А	50.0	mL	100	mL	1	M103859
Total Hardness (EDTA) as CaCO3	SM2340 C 2011	10/3/19 10:26 AKS	Bryan	С	50.0	mL	50.0	mL	1	M104215
Turbidity	SM2130 B 2011	9/25/19 20:39 RNH	Bryan	С	10.0	mL	10.0	mL	1	M103898
See sub-contract reports for preparation	n information of subcontracted analyses.									
C031243-01RE1										
Manganese	EPA 200.8 R5.4	10/22/19 15:56 AOG	Bryan	С	50.0	mL	25.0	mL	2.5	M105007
Sample Acidified to pH<2 in Lab	N/A	9/24/19 16:20 KK	Bryan	С	100	mL	100	mL	1	M103855
C031243-01RE2										
Sample Acidified to pH<2 in Lab	N/A	10/1/19 10:16 CRO	Bryan	F	250	mL	250	mL	1	M104090

Chain-of-Custody & A		635 Pt Bryan, Phone	n Lab: Lab: Lab: nil Gramm Blvo Texas 77807 : (979) 778-37 979) 778-3193	707	7500 V Austin Phone	in Lab: N. Hwy. 71, S , Texas 78735 :: (512) 301-95 corp@aqua-t	5 559	с-о-с# 2949	152		al and a second se	THI ANTONY	≋ V-0023 R01
Client / Project Name:					* DEFINITIO	DNS: DW - Drin CM Cus	king Water tody Maintain		S – Solid	LAB	USE ONL	Y (initials	Khe)
Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres.	Analysis Requeste		Cooler ID		Sub- ontract	Lab ID #
MIH EL	 Application of the limit of an and the limit of a second seco		Grab	DW	0.12L	St P	1, 5		NARK			10.000 (contracting to provide the contraction of t	danamatan kana sa kana
" EL	9-24-19	11:00		ØW	11	ρ		SEC 47 Mn NO3 NO	3 SUYDS	of/	- <u>ci</u> soy	Any Co	31243-01A
MUTT 4. U	9-24-18	11:00	C 14	OW	0.12L	Str	15	Boit.		07			014
MITANID	9.24.19	11:30	17	DW	NAL	STP	1.5	BACT		7	and the second	í (î	121-07A
1HH GO		71.00	ľ		1 Miles			มและและไม่ได้และครามมีเสียงเห็นของการการการการการการการการการการการการการก	a south sub or conversion of the				an an ann an Anna an An Anna an Anna an A
								NEEKS					agamiento antico de la construcción
	Client OATL Fi	əld arrival in Lab	Date 9.4 Date Date Cl ₂	24.19	Time		Rec'd by: (pr Kelly	Int & sign) Client BATL Field Int & sign) CReceived in Lab Kukowski	Uient Co	mments:	Date Date Date G /ZU	Time Time 19 160	*X" all that ap Rec"d Chille C ond Good CTU * I cod in Tran Rec"d Chille C ond Good CTU * I cod in Tran Prec"d Iced Not Rec"d Iced Prec"d Iced Prec"d Cod Prec"d
					Phone: 8	alls, TX 78 330-798-27 -798-2703			Laborator	v Commei	nis		
pH Paper ID#:	1 ≤ ($3 {}^{\mathrm{o}}\mathrm{C}$ (not frozen)	2 = H ₂ S	₩¥		3 = HCI		4 = HNU3		,			
5 = Na ₂ S ₂ O ₃ (Line below documents condition at	6 = NaOH		7 = ian. Lab location	n noted by che	eck box at top o	8 = of C-O-C.) Temp °C:		9 =					

Aqua-Tech Laboratories (Austin

635 Phil Gramm Blvd. Bryan, TX 77807-9104

John Brien

LELAP-accredited #02008

Report

3 4 5

1

2

Table of Contents

Printed 10/02/2019

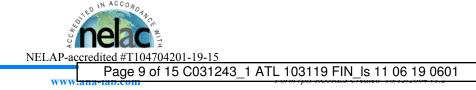
Page 1 of 1

C031243

	This report consists of this Table of Contents and the following pages:	
Report Name 891353_r03_03_ProjectResults	Description Ana-Lab Project P:891353 C:AQU5 Project Results t:304	Pages 2
891353_r03_06_ProjectTRRP	Ana-Lab Project P:891353 C:AQU5 Project TRRP Results Report for Class	2
891353_r10_05_ProjectQC	Ana-Lab Project P:891353 C:AQU5 Project Quality Control Groups	1
891353_r99_09_CoC1_of_1	Ana-Lab CoC AQU5 891353_1_of_1	2
	Celebrating Total Pages:	7

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

	Ana-Lab Corp.	P.O. Box 9000	Kilgore, TX 7	5663 Re	port Page 2	of 8
ANA-LAB	Phone 903/984-0551 FAX			ual Improvement	Page 1	of 2
THE COMPLETE SERVICE LAB	Results	Printed: 10/02/2019	13:04		-	l 353
Report To	C031	1243	Account AQU5-C			
Aqua-Tech Laboratories (Aust John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	in]		
		Results				
1822958 C031243-01				Received:	09/25/2019	
Drinking Water	<i>Collected by:</i> Client <i>Taken:</i> 09/24/2019 1	Aqua-Tech Labora 1:00:00	tori	PO:		
EPA 300.0 2.1	Pre	pared: 860805 09/26/201	9 09:59:00 Analyzed	860805 09/26/2019	09:59:00	ATN
Parameter	Resul	ts Units R	L Fla	ig CAS	Bott	le
N Chloride	14.7	mg/L 3.	00 D		01	
EPA 300.0 2.1	Pre	pared: 861020 09/27/201	9 20:59:00 Analyzed	861020 09/27/2019	20:59:00	AMB
Parameter	Resul	ts Units R	L Fla	ng CAS	Bott	le
N Sulfate	624	mg/L 3	0		01	


Qualifiers:

D - Duplicate RPD was higher than expected

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation. These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

1

2

4

5

www.ana-lab.com

1

2

4

5

Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

Results Summary

C031243

LELAP-accredited #02008 Printed 10/02/2019 Page 2 of 2 Project

891353

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

Bill Poor

Bill Peery, MS, VP Technical Services

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

LDSClient v1.14.40.1833

www.ana-lab.com

NA-L	AB)	Phone 903/984	Em	ployee O	wned	Integrity	(a)ana-lab. Carii		LELA ntinual Improve	P-accred ement	ited #020	008
COMPLETE		Q	uality	y Co	ontro	1	Pri	nted 10/0	2/2019			ge 1 of 1 <mark>891353</mark>
Report	То							Account				
Aqua-To John Bri	ech Laboratories (Aust	in					A	QU5-0	С			
	Gramm Blvd. TX 77807-9104											
	Analytical Set	860805			Blank						EPA	A 300.0 2
	<u>Parameter</u> Chloride	PrepSet 860805	Reading 0.041	<i>MDL</i> 0.0196	<i>MQL</i> 0.300 CCV	<i>Units</i> mg/L			<i>File</i> 120424398			
	<u>Parameter</u> Chloride		Reading 9.98 9.89 9.86	<i>Known</i> 10.0 10.0 10.0	<i>Units</i> mg/L mg/L mg/L	Recover% 99.8 98.9 98.6	<i>Limits%</i> 90.0 - 110 90.0 - 110 90.0 - 110		File 120424394 120424408 120424419			
					LCS Du	р						
	<u>Parameter</u> Chloride	PrepSet 860805	<i>LCS</i> 5.07	<i>LCSD</i> 5.08	MSD	Known 5.00	<i>Limits%</i> 85.0 - 110	<i>LCS%</i> 101	LCSD% 102	<i>Units</i> mg/L	RPD 0.197	<i>Limit%</i> 20.0
	<u>Parameter</u>	Sample	MS	MSD	UNK	Known	Limits	MS%	MSD%	Units	RPD	Limit%
	Chloride	1822958 1822964	26.5 48.4	23.1 48.2	14.7 39.6	10.0 10.0	80.0 - 120 80.0 - 120	118 88.0	84.0 86.0	mg/L mg/L	33.7 * 2.30	20.0 20.0
	Analytical Set	861020			Blank						EP	A 300.0 2
	<u>Parameter</u>	PrepSet	Reading	MDL	MQL	Units			File			
	Sulfate	861020	ND	0.0109	0.300 CCV	mg/L			120431067			
	<u>Parameter</u> Sulfate		Reading 10.5 9.97	Known 10.0 10.0	<i>Units</i> mg/L mg/L	Recover% 105 99.7	<i>Limits%</i> 90.0 - 110 90.0 - 110		<i>File</i> 120431064 120431079			
			9.97	10.0	mg/L LCS Du	101	90.0 - 110 90.0 - 110		120431079			
	<u>Parameter</u>	PrepSet	LCS	LCSD	LCS Du	P Known	Limits%	LCS%	LCSD%	Units	RPD	Limit%
	Sulfate	861020	5.00	5.02	Мср	5.00	88.0 - 110	100	100	mg/L	0.399	20.0
	Payam ator	Samuela	MS	мер	MSD	Vn or ····	I imita	M\$%	MSD0/	17 : 4	חקק	1 :: 40/
	<u>Parameter</u> Sulfate	<i>Sample</i> 1822969	MS 32.5	MSD 32.3	UNK 22.7	Known 10.0	<i>Limits</i> 80.0 - 120	MS% 98.0	MSD% 96.0	<i>Units</i> mg/L	RPD 2.06	<i>Limit%</i> 20.0
		- 022/0/										=

Blank - Method Blank; CCV - Continuing Calibration Verification

N ACCORD

NELAP-accredited #T104704201-19-15

IT H

ACCA.

W

LDSClient v1.14.40.1833

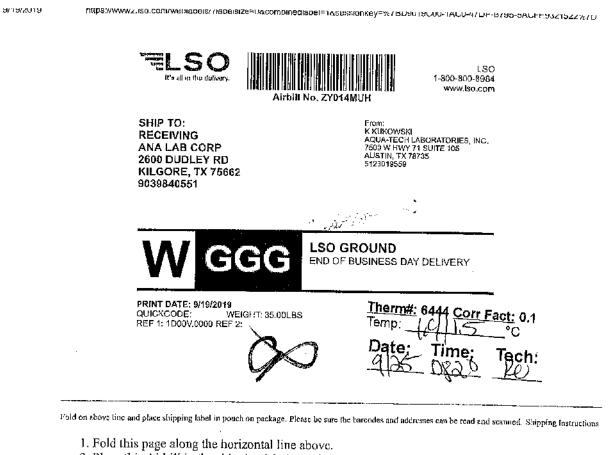
Page 13 of 15 C031243_1 ATL 103119 FIN_ls 11 06 19 0601

5

Report Page 7 of 8

1 of 2

CONTAINERS SUPPLIED: (ATL indic	Chloride - EPA 300.0 SO4 DW - EPA 300.0	Analysis Request for: Sample ID: C031243-01	All analyses must be performed by a TNI approved r	Fax (979) 778-3193 Fax (512) 301-9652 F	(379) 776-3707 - Austin, TX 78736 - F (379) 776-3707 - (512) 301-9559 - F	d. 7500 Hwy 7: W. Suite 125	-		NOUA-TECH
(ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.)	EPA 300.0	Sample ID: C031243-01 Sampled: 09/24/19 11:00 Matrix: Drinking Water	All analyses must be performed by a TNI approved method certified by the TCEQ. Contact ATL's sample custodian via voice and email if your methods do not meet this criteria.	Fax: (903) 984-5914	Phone: (903) 984-0551	Kilgore, TX 75662	Ana-Lab Corp. (NELAP Cert. T104704201)	SHIPPED TO:	Chain-of-Custody & Analysis Request
uired if more than one cooler listed below. }	· · · · · · · · · · · · · · · · · · ·	Laboratory ID >> 18 2 79 5 8	voice and email if your methods do not meet this c	Page 1 of 1	142 - C031243		# J-O-J		Analysis Request


() C031243-01 [B] - CI SO4 0.5LP	CONTAINERS SUPPLIED:	Chloride - EPA 300.0
	(ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.)	SO4 DW - EPA 300.0

891353 CoC Print Group 001 of 001

BRET	Austin Facility		N/A	N/A	N/A
	Please return cooler(s) to:	L			Cooler 1
	eorp@aqua-techiabs.com		Corrected Temp. (C3)	Terrip, Read (TR)	Cooler Temperature (°C)
See Attached for	ADS/A 0810 Acordition Gase		Summan Ana-Late Kill Ange And Ange Ange Ange Ange Ange Ange Ange Ange	s condition at roce	Kelly Overman Ana-Lab
5 DAY TAT	Date Time Assessment 5			Received in Lab	Received by: (orint & sign)
Aqua-Tech Comments and Special Instructions	MUH Sample info	AQU5 - ZY014I	Cooler 1: AQU5 - ZY014MUH		Lone Star
VP - Non-For;sb/e Water StP - Sterite Plastic S - Sonic LP - Liter Plastic CTU - Dustody Traistier Unbroken LC - Liter Glass	9/24/19 1630 Curray Seesed			D	Carrier & Tracking Number:
Abbreviations: DW Drinking Water		Sampler	, ⊡ATL-Bryan	X ATL-Austin	Reinquished by: (print & sign) 🛛 🗶 ATL-Attein

2 of 2

891353 CoC Print Group 001 of 001

- 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To focate a drop box near you, click on Find A Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone Star Overnight account number.

This label is valid for use for 3 months from the date printed. Use of expired labels may result in delayed billing and / or additional research charges. LIMIT OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) declare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual has in a timely manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a package without for 8,30 AM DELIVERIES OR RESIDENTIAL DELIVERIES.

Water Quality

Well No. 6

Email information for report date: 10/2/19 11:58

C031486

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

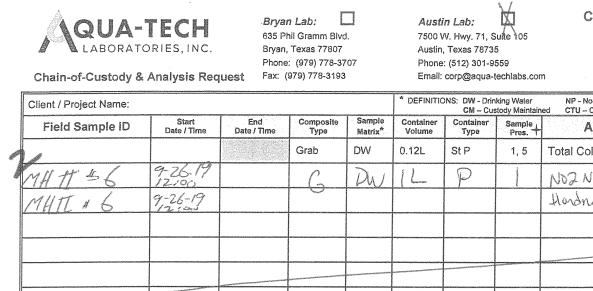
June M. Brien June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 3 C031486 2 ATL 030419 FIN Is 10 02 19 1158



TCEQ DW Lab ID TX 239

CORPORATE OFFICE					AUSTIN	OFFICE						Analytica	l Report
635 Phil Gramm Boulevard Bryan, TX 77807	KQQL	JA-	TECH	7500 H	wy 71 W, Si Austin, TX							Аре	ex Drilling
Phone: (979) 778-3707 Fax: (979) 778-3193	LAB	ORAT	ORIES, INC.		one: (512) 30 Fax: (512) 30					Report Printe	ed:	10/2/19	11:58
1 a. (373) 776-3193					ax. (512) 50	1-9002	_						C031486
MAJESTIC HILLS II NO6			l: 09/26/19 12:00 by CLIE l: 09/26/19 15:50 by Kelly			<i>Type</i> Grab			<i>Matrix</i> Drinking	Water	C-O-C # 295032		
Lab ID# C031486-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed		Method		Batch	
Microbiological Analyses													
Total Coliforms	Absent	N/A		N/A	N/A	N/A	Austin	09/26/19 16:21	JLL	SM9223 B 2004		M103953	NEL
Escherichia coli (E.coli)	Absent	N/A		N/A	N/A	N/A	Austin	09/26/19 16:21	JLL	SM9223 B 2004		M103953	NEL

				М	icrobiolog	ical Analyses - Q	uality Control				Log10 C	omparison		
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli (E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	09/26/19 15:33 JL	L						M103953	
Total Coliforms -	SM9223 B 200)4												Austin
Blank	Absent	N/A		N/A	N/A	09/26/19 15:33 JL	L						M103953	

		Sample Prepa	aration Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C031486-01										
Escherichia coli (E.coli)	SM9223 B 2004	9/26/19 16:20 JLL	Austin	А	100	mL	100	mL	1	M103953
Total Coliforms	SM9223 B 2004	9/26/19 16:20 JLL	Austin	А	100	mL	100	mL	1	M103953

C-O-C # 295032

V-0023 R01 127

Cli	ent / Project Name:						* DEFINIT	FIONS: DW - Drir CM - Cu	king Water stody Maintain	NP - Non-Potable Water ed CTU – Custody Transfer Unbroker	S – Solid	LAE	B USE C	ONLY (ini	tials_HL_)
	Field Sample ID		Start e / Time	End Date / Time	Compo Typ		Containe Volume	r Container Type	Sample Pres. +	Analysis Reque	sted	Cooler ID	Bottle pH	Sub- contract	Lab ID #
	¢				Grab	DW	0.12L	St P	1, 5	Total Coliform & E.coli P/A		ist	1.25.47.5 ¹²⁰⁴	and a	C03148601A
M	HH 56	9-2	6.19		C	DW	1L	P	į	NO2NOS pH CI CO	JFFe		(Jajun-	Ana	1031487-01A
M	HTT + 6		6-19							Hondness Mr Soll	TOS				
										. ~	on)				and an end of the second s
										M	Lance				· · ·

acci	editation will be subcontracted	d to a NEL	AC certified la	ab that is certified	for that met	hod. Clients will be	a notified of the	subcontract lab'	s details. Othe	ech Laboratories' NELAC fields of accred r analytes not requiring accreditation will t rent list of Aqua-Tech's NELAC fields of a	e analyzed by a co	ompendial me	ethod. If a sp	ecific method is	in Aqua-Tech's fields of s required, the client will note
Relir	quished by: (print & sign)	Client	ATL Field	d 🔲 Sampler				Sample Info "X" all that apply	Rec'd by: (pri	nt & sign) 🗍 Client 🔲 ATL Field					Sample Info "X" all that apply
	Ma					Date 9-16-19 15:50	15:50	 Iced Chilled/Refrig Cust. Sealed Not Chilled 		NÆ	U	and the second	Date	Ti	me Rec d Chilled Cond Good CTU * I ced in Transit
Relin	quished by: (print & sign)] Client	ATL Field	d		Date		Chilled/Refrig Chilled/Refrig CM *	Rec'd by: (pri	nt & sign) Client ATL Field	gantaggionos and		Date	Tir	me ERec'd Chilled Cond Good CTU *
Relin	quished by: (print & sign)]Client	DATL Field	arrival in Lab		Date	Time C	I I I Ced Chilled/Refrig CM * Not Chilled		nt & sign) DReceived in tab		line on an	Date 9/2		ne ErRec'd Iced 550 ErCTU* ErCond Good
	Field Sample ID	Time	рH	D.O.	Cl ₂	Flow	Client Ad	dress and Ph	ione # :	Ň	Client Co	mments:			AT CONTRACTOR
							Apex Dr PO Box	867		V					
							Marble F	Falls, TX 78	654						
								830-798-273)-798-2703	39						
	pH Paper ID#:		1		2 =	H ₂ SO ₄		3 = HCI		4 = HNO3	Laborator	y Comme	nts:		
Pres.			≤ 6 °	°C (not frozen)			naming i nam ki mila si su su su su								
Sample	$5 = Na_2S_2O_3$		6 = NaOH		7 =			8 =		9 =					
(Line	below documents condition at	t receipt in	Laboratory by	Sample Custodia	an. Lab loc	cation noted by che		f C-O-C.) Temp ℃:		CT Therm ID:					
C	CA 11.1		11.		5570										

Email information for report date: 10/15/19 09:20

C031487

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

TCEQ DW Lab ID TX 239

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brien June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

Analytical Report

9:20

Apex Drilling Report Printed: 10/15/19 C031487

The following notes apply to Work Order C031487

Please see the attached sub-contract report for sub-contracted data and qualifier definitions.

MAJESTIC HILLS II NO6			9/26/19 12:00 by CLIE 9/26/19 15:50 by Kelly			<i>Type</i> Grab		<i>Matrix</i> Drinki		C-O-C # 295032	
Lab ID# C031487-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed	Method	Batch	
General Chemistry											
Total Dissolved Solids	474	mg/L		25.0	50.0	50.0	Bryan	10/02/19 14:02 MRH	SM2540 C 2011	M104156	NEL
Nitrate as N (NO3N)	<0.0200	mg/L			0.0200	0.0200	Austin	10/01/19 13:19 AEL	SM4500-NO3-F 2011	[CALC]	NEL
Nitrite as N	<0.01	mg/L	J (0.002)	0.002	0.002	0.01	Austin	09/27/19 07:53 AEL	SM4500 NO2- B 201	1 M103965	NEL
Nitrate/Nitrite as N	0.02	mg/L		0.02	0.02	0.02	Bryan	10/01/19 13:19 MRB	SM4500-NO3-F 2011	M104095	INF
Total Hardness (EDTA) as CaCO3	400	mg/L		1.00	2.00	2.00	Bryan	10/04/19 08:11 MRH	SM2340 C 2011	M104271	NEL
Fluoride	1.94	mg/L		0.04	0.04	0.10	Bryan	10/01/19 13:42 PNS	SM4500-F C 2011	M104093	NEL
pH, Lab	7.6	S.U.	Hold-03		N/A	N/A	Austin	09/27/19 09:30 MSA	SM4500-H+ B 2011	M103978	DWP
Temperature @ pH Analysis	19.3	Deg. C			N/A	N/A	Austin	09/27/19 09:30 MSA	SM4500-H+ B 2011	M103978	DWP
Specific Conductance (adjusted to 25.0°C)	679	uS/cm		2.00	2.00	2.00	Bryan	10/03/19 12:11 CJO	SM2510 B 2011	M104230	DWP,NEL
Metals (Total)											
Iron	0.149	mg/L		0.002	0.002	0.010	Bryan	10/11/19 15:37 PNS	EPA 200.7 R4.4	M104453	NEL
Manganese	3.57	ug/L	ICP-4X	0.108	0.111	0.515	Bryan	10/03/19 08:26 MRG	EPA 200.8 R5.4	M104061	NEL
General Chemistry											
Sulfate as SO4	127	mg/L	P*, D*	0.01	3	3	Sub	09/28/19 02:20 ANA	EPA 300.0	SUB	NEL
Chloride	11.1	mg/L		0.02		3	Sub	09/28/19 02:20 ANA	EPA 300.0	SUB	NEL

AUSTIN OFFICE

Austin, TX 78735

Phone: (512) 301-9559

Fax: (512) 301-9552

7500 Hwy 71 W, Suite 105

Explanation of Notes

D*	[Undefined]
Hold-03	This parameter was outside of EPA holding at the time the sample was received in the laboratory.
ICP-4X	The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
J	Analyte detected below the SQL but above the MDL.
P*	[Undefined]

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 10/15/19 9:20

Report Printed:

C031487

				G	General C	Chemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Fluoride - SM4500-F	C 2011													Bryan
Initial Cal Check	0.34	mg/L				10/01/19 13:42 PNS	0.356		95.5	90 - 110			1910003	
Blank	<0.10	mg/L		0.04	0.10	10/01/19 13:42 PNS							M104093	
LCS	0.77	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798		96.9	90 - 110			M104093	
_CS Dup	0.78	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798		97.7	90 - 110	0.772	6.23	M104093	
Matrix Spike	3.14	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798	2.35	98.9	78.1 - 125			M104093	
Matrix Spike Dup	3.14	mg/L		0.04	0.10	10/01/19 13:42 PNS	0.798	2.35	98.9	78.1 - 125	0.00	5.72	M104093	
MRL Check	<0.10	mg/L	J (0.09)	0.04	0.10	10/01/19 13:42 PNS	0.0998		90.7	73.4 - 118			M104093	
Nitrate/Nitrite as N	- SM4500-N	O3-F 2011												Bryar
Initial Cal Check	1.23	mg/L				10/01/19 13:19 MRB	1.15		107	90 - 110			1910005	
Low Cal Check	0.02	mg/L				10/01/19 13:19 MRB	0.0200		118	70 - 130			1910005	
Blank	< 0.02	mg/L		0.02	0.02	10/01/19 13:19 MRB							M104095	
LCS	0.50	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500		99.9	91.3 - 109			M104095	
LCS Dup	0.50	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500		99.5	91.3 - 109	0.326	6.8	M104095	
Matrix Spike	0.59	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500	0.06	107	94.1 - 111			M104095	
Matrix Spike Dup	0.58	mg/L		0.02	0.02	10/01/19 13:19 MRB	0.500	0.06	105	94.1 - 111	1.88	8.65	M104095	
Nitrite as N - SM450	0 NO2- B 2	011												Austi
Initial Cal Check	0.07	mg/L				05/29/19 12:06 KT	0.0725		102	90 - 110			1905274	
Blank	<0.01	mg/L		0.002	0.01	09/27/19 07:53 AEL							M103965	
LCS	0.08	mg/L		0.002	0.01	09/27/19 07:53 AEL	0.0800		104	90 - 110			M103965	
LCS Dup	0.08	mg/L		0.002	0.01	09/27/19 07:53 AEL	0.0800		99.6	90 - 110	3.90	8.12	M103965	
Matrix Spike	0.08	mg/L		0.002	0.01	09/27/19 07:53 AEL	0.0800	0.002	99.2	70.6 - 117			M103965	
Matrix Spike Dup	0.08	mg/L		0.002	0.01	09/27/19 07:53 AEL	0.0800	0.002	102	70.6 - 117	2.63	8.18	M103965	
MRL Check	0.01	mg/L		0.002	0.01	09/27/19 07:53 AEL	0.0100		111	70 - 130			M103965	
pH, Lab - SM4500-H	I+ B 2011													Austi
Duplicate	7.6	Std Units	Hold-03			09/27/19 09:30 MSA		7.6			0.262	2.05	M103978	
Reference	7.0	Std Units				09/27/19 09:30 MSA	6.86		101	95 - 105			M103978	
Reference	9.0	Std Units				09/27/19 09:30 MSA	9.18		98.6	95 - 105			M103978	
Reference	7.0	Std Units				09/27/19 09:30 MSA	6.86		102	95 - 105			M103978	
Reference	9.2	Std Units				09/27/19 09:30 MSA	9.18		99.8	95 - 105			M103978	
Specific Conductan	ice (adjuste	d to 25.0°C) - S	M2510 B 2011											Brya
nitial Cal Check	489	uS/cm				10/03/19 12:11 CJO	472		104	85 - 115			1910049	
Blank	<2.00	uS/cm		2.00	2.00	10/03/19 12:11 CJO							M104230	
Duplicate	673	uS/cm		2.00	2.00	10/03/19 12:11 CJO		679			0.888	2	M104230	
LCS	1400	uS/cm		2.00	2.00	10/03/19 12:11 CJO	1410		99.5	90 - 110			M104230	

Form: C:\ELMNT\FORMAT\ATL 030419 FIN_LS.RPT

Page 3 of 14 C031487_1 ATL 030419 FIN_ls 10 15 19 0920

Analytical Report

9:20

C031487

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling **Report Printed:** 10/15/19

				G	eneral Ch	nemistry - Quality Co	ntrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Total Dissolved Solid	ds - SM2540	C 2011												Bryan
Blank	<25.0	mg/L		25.0	25.0	10/02/19 14:02 MRH							M104156	
Duplicate	296	mg/L		50.0	50.0	10/02/19 14:02 MRH		296			0.00	9.13	M104156	
Reference	520	mg/L		100	100	10/02/19 14:02 MRH	500		104	81 - 121			M104156	
Total Hardness (EDT	A) as CaCC	03 - SM2340 C 20	11											Bryan
Initial Cal Check	60.0	mg/L				10/04/19 08:11 MRH	54.4		110	85 - 115			1910060	
Blank	<1.00	mg/L		1.00	1.00	10/04/19 08:11 MRH							M104271	
Duplicate	400	mg/L		2.00	2.00	10/04/19 08:11 MRH		400			0.00	9.52	M104271	
LCS	100	mg/L		1.00	1.00	10/04/19 08:11 MRH	100		100	90 - 110			M104271	
LCS Dup	100	mg/L		1.00	1.00	10/04/19 08:11 MRH	100		100	90 - 110	0.00	6.47	M104271	
Matrix Spike	600	mg/L		2.00	2.00	10/04/19 08:11 MRH	200	400	100	87.6 - 111			M104271	
	0.00			4 00	1 00	40/04/40 00:44 MDU	4.00		75.0	70 400			1404074	
MRL Check	3.00	mg/L		1.00	1.00	10/04/19 08:11 MRH	4.00		75.0	70 - 130			M104271	

					Metals	(Total) - Quality Cont	rol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Iron - EPA 200.7 R4.	.4													Bryan
Blank	<0.010	mg/L		0.002	0.010	10/10/19 16:25 PNS							M104453	
LCS	0.933	mg/L		0.002	0.010	10/10/19 16:28 PNS	1.00		93.3	84.5 - 115.4			M104453	
LCS Dup	0.929	mg/L		0.002	0.010	10/10/19 16:31 PNS	1.00		92.9	84.5 - 115.4	0.394	20	M104453	
Duplicate	0.232	mg/L		0.002	0.010	10/10/19 16:35 PNS		0.235			1.37	20	M104453	
Matrix Spike	1.15	mg/L		0.002	0.010	10/10/19 16:38 PNS	1.00	0.235	91.8	69.5 - 130.4			M104453	
Manganese - EPA 2	00.8 R5.4													Bryan
Blank	<0.515	ug/L		0.111	0.515	10/03/19 05:54 MRG							M104061	
LCS	9.92	ug/L		0.112	0.520	10/03/19 06:04 MRG	10.0		99.2	84.5 - 115.4			M104061	
LCS Dup	9.87	ug/L		0.112	0.520	10/03/19 06:14 MRG	10.0		98.7	84.5 - 115.4	0.533	20	M104061	
Duplicate	558	ug/L		0.111	0.515	10/03/19 06:24 MRG		457			19.8	20	M104061	
Matrix Spike	565	ug/L	ICP-4X	0.112	0.520	10/03/19 06:34 MRG	10.0	457	1070	69.5 - 130.4			M104061	

			Prep	aration	Procedures - Quality	Control							
Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Turbidity - SM2130 B 2011													Bryan

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707

Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Ap Report Printed: 10/15/19

9:20 C031487

Apex Drilling

		Sample Prep	aration Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C031487-01										
Fluoride	SM4500-F C 2011	10/1/19 10:32 PNS	Bryan	А	10.0	mL	10.0	mL	1	M104093
Iron	EPA 200.7 R4.4	10/9/19 10:03 AKS	Bryan	С	10.0	mL	10.2	mL	1	M104453
Manganese	EPA 200.8 R5.4	9/30/19 13:13 AKS	Bryan	С	10.0	mL	10.3	mL	1	M104061
Nitrate/Nitrite as N	SM4500-NO3-F 2011	10/1/19 11:09 MRB	Bryan	Е	10.0	mL	10.0	mL	1	M104095
Nitrite as N	SM4500 NO2- B 2011	9/27/19 7:53 AEL	Austin	D	25.0	mL	25.0	mL	1	M103965
pH, Lab	SM4500-H+ B 2011	9/27/19 9:30 MSA	Austin	D	50.0	mL	50.0	mL	1	M103978
Sample Acidified to pH<2 in Lab	N/A	9/26/19 16:40 KK	Bryan	С	100	mL	100	mL	1	M103991
Specific Conductance (adjusted to 25.0)°C)SM2510 B 2011	10/3/19 12:11 CJO	Bryan	Α	25.0	mL	25.0	mL	1	M104230
Temperature @ pH Analysis	SM4500-H+ B 2011	9/27/19 9:30 MSA	Austin	D	50.0	mL	50.0	mL	1	M103978
Total Dissolved Solids	SM2540 C 2011	10/2/19 14:02 MRH	Bryan	Α	50.0	mL	100	mL	1	M104156
Total Hardness (EDTA) as CaCO3	SM2340 C 2011	10/4/19 8:11 MRH	Bryan	С	25.0	mL	50.0	mL	1	M104271
Turbidity	SM2130 B 2011	10/1/19 10:59 RNH	Bryan	С	10.0	mL	10.0	mL	1	M104094
See sub-contract reports for preparation	n information of subcontracted analyses.									
C031487-01RE1										
Sample Acidified to pH<2 in Lab	N/A	9/26/19 16:40 KK	Bryan	Е	100	mL	100	mL	1	M103993

C-O-C # 295032

V-0023 R01

Client / Project Name:						* DEFINITI	ONS: DW - Drir CM - Cus	king Water stody Maintain	NP - Non-Potable Water ed CTU – Custody Transfer Unbroken	S – Solid	LAE	3 USE (ONLY (in	itials	K,
Field Sample ID	Start Date / Tir		End ate / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres. +	Analysis Request	ed	Cooler ID	Bottle pH	Sub- contract	La	ıb ID #
				Grab	DW	0.12L	St P	1, 5	Total Coliform & E.coli P/A		ilt	1997 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -	_	C031	48601A
MH # 56	9-26.1	19		G	Dw	11	P		NO2 NO3 pH CI Con	d F Fe	/	(P0420-	Ana	1031	+87-01A
MHTT + 6	9-26-1-								Hondness Mr Sof	WS .				Ĭ	
										-7n /				-	
									WF7	Lances					
accreditation will be subcontracte	d to a NELAC ce	ertified lab tha	at is certified for	or that method.	Clients will be	notified of the	subcontract lab's	s details. Othe	ech Laboratories' NELAC fields of accredita r analytes not requiring accreditation will be rent list of Aqua-Tech's NELAC fields of acc	analyzed by a co	mpendial m	ethod. If a sp	pecific method	nin Aqua-Tecl is required, th	n's fields of ne client will note
Relinquished by: (print & sign)			Sampler		sho dodallerite		Sample Info		int & sign) Client ATL Field	realitation and ou	isi memoda		o on request.		Sample Info "X" all that apply
12				Dat	9-26-19 5:50	Time	Iced Chilled/Refrig Cust. Sealed Not Chilled		NÆ	er_	and a faith of the second s	Date		ime C	Rec'd Chilled Cond Good CTU *
Relinquished by: (print & sign)	Client A	ATL Field		Dat	CONTRACTOR OF THE OWNER OWN	Time D	Iced Chilled/Refrig CM *	Rec'd by: (pri	nt & sign) Client ATL Pield		nin on a source Addition of the source of th	Date	T	ime C	Rec'd Chilled Cond Good CTU * I Iced in Transit
Relinquished by: (print & sign)]Client 🔲 🛱	TL Field arriv	val in Lab	Dati	8	Time D	Iced Chilled/Refrig CM * Not Chilled		nt & sign) ØReceived in tab Y Kukowski		99999999999999999999999999999999999999	Date 9/2		ime E	Rec'd Iced Not Rec'd Iced CTU *
Field Sample ID	Time	pH	D.O.	Cl ₂	Flow	4	Iress and Ph	ione # :	/	Client Co	mments:			μ ²	
					adıçı araşı dağı araşı	Apex Dril PO Box 8	367		V						
							alls, TX 78								
							30-798-273 -798-2703	39							
pH Paper ID#:	1			2 = H ₂ S	04		3 = HCI		4 = HNO3	Laboratory	/ Comme	nts:			
Pres.		≤ 6 °C ((not frozen)				10000007110100000000000000000000000000								
$\frac{9}{60}$ 5 = Na ₂ S ₂ O ₃	6 = N	aOH		7 =			8 =		9 =						
(Line below documents condition at	t receipt in Labor	ratory by Sam	nple Custodiar	n. Lab location	n noted by chee	ck box at top of	C-O-C.)			-					
Cooler ID: Temp °C:	/ 11		Them ID.	570	Cooler ID		Temp °C:	~ /	CT Therm ID:						

LELAP-accredited #02008

Report

3 4 5

2

Table of Contents

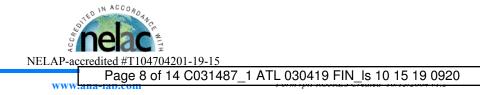
Printed 10/04/2019

Page 1 of 1

Account AQU5-C Project 891774

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

	This report consists of this Table of Contents and the following pages:	
Report Name 891774_r03_03_ProjectResults	Description Ana-Lab Project P:891774 C:AQU5 Project Results t:304	Pages 2
891774_r03_06_ProjectTRRP	Ana-Lab Project P:891774 C:AQU5 Project TRRP Results Report for Class	2
891774_r10_05_ProjectQC	Ana-Lab Project P:891774 C:AQU5 Project Quality Control Groups	1
891774_r99_09_CoC1_of_1	Ana-Lab CoC AQU5 891774_1_of_1	2
		7



Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

NELAP-accredited #T104704201-19-15

Phone 903/984-0551 C-Man corpogana-tab.com

	Ana-Lab Corp.	P.O. Box 9000	Kilgore,	TX 75663	Rep	oort Page 2 of 8
ANA-LAB	Phone 903/984-0551 FAX	903/984-5914 e-Mail co Employee Owned Integ		om Continual Improv	ement	
THE COMPLETE SERVICE LAB	Results	Printed: 10/04/2019	9:59			Page 1 of 2 891774
			Acc	ount		
Report To			AO	U5-C		
Aqua-Tech Laboratories (Aust John Brien	in					
635 Phil Gramm Blvd.						
Bryan, TX 77807-9104						
		Results				
1823901 C031487-01					Received:	09/27/2019
Drinking Water	Collected by: Client	Aqua-Tech Laborate	ori	1	PO:	
	Taken: 09/26/2019 12	:00:00				
EPA 300.0 2.1	Prep	pared: 861031 09/28/2019	02:20:00	Analyzed 861031	09/28/2019	02:20:00 ATN
Parameter	Result	s Units RL		Flag	CAS	Bottle
N Chloride N Sulfate	11.1 127	mg/L 3.0 mg/L 3.0		PD		01 01
/v Sulfate	127	mg/L 3.0 Sample Preparation		PD		01
		Sample I reparation	<i>)</i> 11			
1823901 C031487-01					Received:	09/27/2019
Cooler Return	Prez	pared: 10/01/2019	17:00:00	Analyzed	10/01/2019	17:00:00 WTS
	1.02			,		
z Return Cooler/No bottles Requi	re Return	ned				
•						

A	Ana-Lab Corp.	P.O. Box 9000 Kilgore, TX 75663	Report Page 3 of 8
INA-LAB	Phone 903/984-0551 FA	X 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caring Continual Improvement	
COKP.	Results	Printed: 10/04/2019 9:59	Page 2 of 2 891774

Qualifiers:

Th

D - Duplicate RPD was higher than expected

P - Spike recovery outside control limits due to matrix effects.

NELAP-accredited #T104704201-19-15

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

5

Page 9 of 14 C031487 1 ATL 030419 FIN Is 10 15 19 0920

1 2

4 5

	Ana-Lab Cor	p. P.O. Box 9000	Kilgore, T	X 7566	3						Report Pag	je 4 of 8
ANALAB	Phone 903/984-055	1 FAX 903/984-5914 e-Mail	corp@ana-lab.co	om				L	ELAP-ac	ccredited #020	08	
THE COMPLETE SERVICE LAB		Result	s Sum	mary	Ι			0/04/20		Page 1 of 2		_
Report To Aqua-Tech Laboratories (Au John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	ustin			DW			Р	roj	ject	5 85	91774	
<u>CAS</u>	Parameter		Results	MDL	SDL	MQL	MQLAdj	Flag	Units	Target	Bottle D	ilute
Drinking Water		Ion Chromatogi	aphy				E	PA 300	.0 2.1			
1823901 Prepa	C031487-01	1031	Collection:	09/26/2)19	12:00:00	Client			Received:	09/27/201	9
					Analyzed:		861031	9	/28/19	02:20:00		
	Chloride		11.1	0.0196	0.196	0.300	3.00		mg/L	250 Secondary Standard	01	10.00
	Sulfate		127	0.0109	0.109	0.300	3.00	PD	mg/L	250 Secondary Standard	01	10.00
	ection Limit (40 CFR 136 A Quantitation Limit and corre	•• /			SDL is Sample		it and is the adjuste DJ is the Adjusted					

D - Duplicate RPD was higher than expected

P - Spike recovery outside control limits due to matrix effects.

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No L4026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation. These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

Results Summary

DW

 LELAP-accredited #02008

 Printed
 10/04/2019
 Page 2 of 2

 Project
 891774

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

Bill Poor

Bill Peery, MS, VP Technical Services

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

LDSClient v1.14.40.1834

www.ana-lab.com

ort Page 6 of 8	Report	53	TX 756	Cilgore,	9000 1). Box	. P.C	b Corp	Ana-La	13
ted #02008		LELAP- uual Improvem		ana-lab.co Caring	e-Mail corp@ Integrity		X 903/98 ployee O		Phone 903/984	1-LAB
Page 1 of 1 891774)19	ed 10/04/2	Print	1	ntro	/ Co	uality	Qı	PLETE SERVICE LAB
			ccount	A						and To
			QU5-C	A						port To
									Istin	ua-Tech Laboratories (Au in Brien 5 Phil Gramm Blvd. yan, TX 77807-9104
EPA 300.0 2.									861031	Analytical Set
						Blank				
		File			Units	MQL	MDL	Reading	PrepSet	<u>Parameter</u>
		120431298			mg/L	0.300	0.0196	0.021	861031	Chloride
		120431298			mg/L	0.300	0.0109	ND	861031	Sulfate
						CCV				
		File		Limits%	Recover%	Units	Known	Reading		Parameter
		120431295		90.0 - 110	99.4	mg/L	10.0	9.94		Chloride
		120431310		90.0 - 110	98.4	mg/L	10.0	9.84		
		120431320		90.0 - 110	97.5	mg/L	10.0	9.75		
		120431295		90.0 - 110	101	mg/L	10.0	10.1		Sulfate
		120431310		90.0 - 110	99.6	mg/L	10.0	9.96		
		120431320		90.0 - 110	98.9	mg/L	10.0	9.89		
					р	LCS Du				
RPD Limit%	Units	LCSD%	LCS%	Limits%	Known		LCSD	LCS	PrepSet	<u>Parameter</u>
0.198 20.0	mg/L	101	01	85.0 - 110	5.00		5.05	5.06	861031	Chloride
0 20.0	mg/L	103	03	88.0 - 110	5.00		5.16	5.16	861031	Sulfate
						MSD				
RPD Limit%	Units	MSD%	MS%	Limits	Known	UNK	MSD	MS	Sample	Parameter
5.52 20.0	mg/L	93.0	38.0	80.0 - 120	10.0	11.1	20.4	19.9	1823901	Chloride
80.0 * 20.0	mg/L	70.0 *	80.0 *	80.0 - 120	10.0	127	134	130	1823901	Sulfate
0 20.0	mg/L	70.0 *	70.0 *	80.0 - 120	100	1020	1090	1090	1823960	Chloride
0 20.0										

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank; CCV - Continuing Calibration Verification

ACCOA

NELAP-accredited #T104704201-19-15

ACO.A

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Page 12 of 14 C031487_1 ATL 030419 FIN_ls 10 15 19 0920

1 of 2

Report Page 7 of 8

		A 300.0	SO4 DW - EPA 300.0	Chloride - EPA 300.0
066681	Mathx: Drinking Water Laboratory ID >> 1823-90	Sample ID: C031487-01 Sampled: 09/26/19 12:00	Sample ID: C031487-01	Analysis Request for:
do not meet this criteria.	All analyses must be performed by a TNI approved method certified by the TCEQ. Contact ATL's sample custodian via voice and email if your methods do not meet this criteria	thod certified by the TCEQ. Contact A	c performed by a TNI approved me	All analyses must b
Page 1 of 1		Fax: (903) 984-5914	Fax (512) 301-9552 Fa	Fax (979) 778-3193
	21 - C031487	Phone: (903) 984-0551		Biyan, TX 77807 (979) 778-3707
		2600 Dudley Road Kiloore, TX 75662	ATL - Austin Facility: 20 7500 Hwy 71 W, Suite 105 Kill	ATL - Bryan Facility. 635 Phil Gramm Blvd, 750
T104704371		Ana-Lab Corp. (NELAP Cert. T104704201)	I	LABORATORIES, INC.
			I	MQUA-TECH
	Chain-of-Custody & Analysis Request	Ch		

Analysis Request for:	Sample ID: C031487-01 Sampled: 09/26/19 12:00 Matrix: Drinking Water Laboratory ID >> 1999 ()	
Chloride - EPA 300.0	SO4 DW - EPA 300.0	:
CONTAINERS SUPPLIED:	(ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.)	
_() C031487-01 [B] - CI SO4 0.5LP	0.5LP	

891774 CoC Print Group 001 of 001

]			Į		
santries	Date	Time	1	Abbreviations: DW- Drinking Water	
	· · ·	1	Custudy Sealed	NP - Non-Patrable Water StP - St	S:P - Sterle Plestic
	Pality by □ 5C() D) @ 7] D	ດ ບົ ບົ	Not Chilled	S - Sulid LP - Lta	LP - Liter Plant'o
	-			CTU - Custody Transfer Urbroken LG - Liter 3:ass	2;\$;\$ 5
r 1: aqu5 - zy0157d9	Ð		Sanple Infe .X. alones	Aqua-Tech Comments and Special Instructions	structions
	Date	Типе	Received loss	3 DAY TAT	
		3	CID		
B 2 4 7 7	9/27/19 080 Acmeting 200	80	Condition Cood		
			Not Recicilized		

Reinquished by, (print & sign) Kelly Kukowski

X ATL-Auxin

È

- Bryan

Lone Star ernier & Tracking Number

Cooler 1:

Elisa Tucker Ana-Lab (r 5:8 S find): Yo have

ooler Temperature (°C)

Temp Reat (FR)

Corrected Temp. (CT)

Thermometer (D

Please return cooler(s) to: P lease smaîl roports to: co*r*p@aqua-techlabs.com

Austin Facility

BRET

N/A

N/A

Cooler 1 NA

Line below documents condition at receipt in lab (shipped to) listed above.

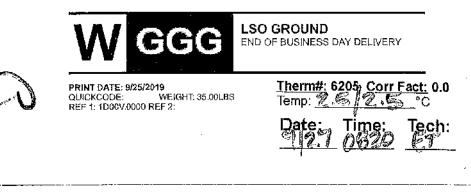
2

See Attached for See Attached Temp Tracking # and Temp

2 of 2

1 2 3 4 5

891774 CoC Print Group 001 of 001


nttps://wwwz.iso.com/wedrapteix/ /labelsizeFU&complifediabel#/(&sessionkeyF%/B5zabU3U1-98ZU-4FDE-94E2-vpA76ZUFA0EA%7D

 King all let the delivery.
 Image: Alrbit No. ZY9157D9
 LSO 1-600-800-8984 WWW.lso.com

 SHIP TO:
 Alrbit No. ZY9157D9
 WWW.lso.com

 RECEIVING
 Alumetric IL ABORATORIES, INC. 7500 W HWY 71 SUITE 105 AUSTIN, TX 78735 5123019559

 2600 DUDLEY RD
 Alustin, TX 78735 5123019559

Fold on above line and place shipping label in pouch on package. Please be sure the barcodos and addresses can be read and seauned. Sbipping Instructions

1. Fold this page along the horizontal line above.

9/25/2019

- 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To locate a drop box near you, click on Find A Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping. Using a photocopy of this tabel for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone Star Overnight account number.

This label is valid for use for 3 months from the date printed. Use of expired labels may result in delayed billing and / or additional research charges. LIMIT

OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) doctare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss in a timely manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential durages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a package without obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR \$30 AM DELIVERIES OR RESIDENTIAL DELIVERIES.

https://www.len.com/wehlabals/2lahalsize=0.8r/amhinedlabal=4.8sossiankev=%78536803D4_6820_4.5F19=04F2_084782DF540E4%7D

1/1

Water Quality

Well No. 8

Email information for report date: 10/14/19 08:48

C032981

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

CORPORATE OFFICE					AUSTIN	OFFICE						Analytica	l Report
635 Phil Gramm Boulevard Bryan, TX 77807	KQL	JA-	TECH	7500 H	wy 71 W, Si Austin. TX							Аре	x Drilling
Phone: (979) 778-3707 Fax: (979) 778-3193	LAB	ORAT	ORIES, INC.		one: (512) 30 Fax: (512) 30	1-9559	_			Report Printe	ed:	10/14/19	8:48 C032981
MAJESTIC HILLS II NO8			l: 10/08/19 17:00 by CLIE l: 10/09/19 12:00 by Kelly			<i>Type</i> Grab			<i>Matrix</i> Drinking	Water	C-O-C # 295190		
Lab ID# C032981-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed		Method		Batch	
Microbiological Analyses													
Total Coliforms	Absent	N/A		N/A	N/A	N/A	Austin	10/09/19 12:19	JLL	SM9223 B 2004		M104477	NEL
Escherichia coli (E.coli)	Absent	N/A		N/A	N/A	N/A	Austin	10/09/19 12:19	JLL	SM9223 B 2004		M104477	NEL

Microbiological Analyses - Quality Control Log10 Comparison														
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli	(E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	10/09/19 12:19 JLL							M104477	
Total Coliforms -	- SM9223 B 200)4												Austin
Blank	Absent	N/A		N/A	N/A	10/09/19 12:19 JLL							M104477	

	Sample Preparation Summary											
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Dilution Factor	Batch		
C032981-01												
Escherichia coli (E.coli)	SM9223 B 2004	10/9/19 12:16 JLL	Austin	А	100	mL	100	mL	1	M104477		
Total Coliforms	SM9223 B 2004	10/9/19 12:16 JLL	Austin	А	100	mL	100	mL	1	M104477		

Bryan Lat	5: L
-----------	------

635 Phil Gramm Blvd.

Bryan, Texas 77807

Phone: (979) 778-3707

Austin Lab: 7500 W. Hwy. 71, Suite 105 Austin, Texas 78735 Phone: (512) 301-9559 Email: corp@aqua-techlabs.com

C-O-C #

295190

V-0023 R01

Page 3 of 3 C032981_2 ATL 030419 FIN_Is 10 14 19 0848

Chain-of-Custody & Analysis Request Fax: (979) 778-3193

Client / Project Name:					* DEFINITI	ONS: DW - Drin CM - Cus	iking Water stody Maintair	NP - Non-Potable Water ed CTU – Custody Transfer Unbroken	S – Solid	LAE	3 USE (ONLY (ini	tials (K)
Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres. +	Analysis Request	ed	Cooler ID	Bottle pH	Sub- contract	Lab ID #
<u>Ø</u>			Grab	DW	0.12L	St P	1, 5	Total Coliform & E.coli P/A		at	. معوري	-	C032981-01A
MHI #8	10-8-19		ß	DW	2412	P	1	NUZ NUJOH CI Cond	F Fe	7	ti and the second s	Anu	(032980-01A
MHTE8	10-8-19							Hundmesses Mrs Soul 7	8				n an
	5							NFE	Ms	and a second	and the second		,
							kanananan ang sanan kanan k						·

II accreditation will be subcontracted	O IO A MELAC Centilie	o lao inal is cenineo i	or that method	Lients will be	notified of the	subcontract lab's	dotaile Othe	ech Laboratories' NELAC fields of accredital r analytes not requiring accreditation will be rrent list of Aqua-Tech's NELAC fields of acc	analyzed by a se	mananatiot mo	shad to an	collin mathead is	in Aqua-Tech's fields of s required, the client will not
Relinquished by: (print & sign)	Client ATL F	ield 🔲 Sampler			*X	Sample Info (* all that apply	Rec'd by: (pr	int & sign) Client ATL Field					Sample Info "X" all that app
WB			Date	-9-19	12:00 B	Iced Chilled/Refrig Cust. Sealed Not Chilled		NEW		and a subscription of the	Date	Ti	me Rec'd Chilled Cond Good CTU *
]Client	ïeld	Date			Iced Chilled/Refrig CM * Not Chilled	Ree'd by: (pri	nt & sign) Client DATL Field	An di Anfonda Antonio de Companya de Co		Date	Tir	me 🗆 Rec'd Chilled 🗆 Cond Good 🗆 CTU * 🗆 Iced in Transi
Relinquished by: (print & sign)] Client ATL Fi	eld arrival in Lab	Date		Time D	Iced Chilled/Refrig CM *	Rec'd by: (pri	nt & sign) Preceived in Kab kowski AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2017) sur (3 antibird 1964) sur an ann an an ann an ann an ann an an an		Date 10/9/		me Erec'd Iced II Not Rec'd Iced 2000 Erectu *
Field Sample ID	Time pH	D.O.	Cl ₂	Flow		ress and Ph			Client Co	mments:			
					Apex Dril PO Box 8 Marble Fa		654	/					
					Phone: 8: Fax: 830-	30-798-273 798-2703	19						
pH Paper ID#:	1	S °C (not frozen)	2 = H ₂ SO	4		3 = HCI		4 = HNO ₃	Laboratory	Commer	nts:		
$\frac{\omega}{\omega}$ 5 = Na ₂ S ₂ O ₃	6 = NaOH	1 (not frozen)	7 =	and the state of the second		-	*****						
5 = Na ₂ S ₂ O ₃	6 - NaOn		/ =			8 =		9 =					
(Line below documents condition at Cooler ID: Temp •C:		by Sample Custodia	n. Lab location i	noted by chec		C-O-C.) Temp °C:		OT Them ID.					
Cef 7.1	17.1		570	Cooler ID		iemp °C:		CT Them ID:					

Email information for report date: 11/1/19 09:18

C032980

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls. TX 78654

Submission forms:

Due to updates by TCEQ, the submission form used for Drinking Water Revised Coliform Rule has been updated. Please contact us if you need a copy of this new Chain of Custody form.

Aqua-Tech values you as a customer and encourages you to speak with our sampling staff at 979-778-3707 option 2 or samplingbryan@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brien June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 14 C032980 1 ATL 103119 FIN Is 11 01 19 0918

TCEQ DW Lab ID TX 239

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Austin, TX 78735 Bryan, TX 77807 **Report Printed:** 11/1/19 9:18 Phone: (979) 778-3707 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C032980 C-O-C # **MAJESTIC HILLS II NO8** Matrix Collected: 10/08/19 17:00 by CLIENT Type Received: 10/09/19 12:00 by Kelly Kukowski Grab **Drinking Water** 295190 Lab ID# C032980-01 Result Units MDL Adi MDL SQL Lab Analyzed Method Notes Batch General Chemistry **Total Dissolved Solids** 516 mg/L 25.0 50.0 50.0 Bryan 10/11/19 15:15 MRH SM2540 C 2011 M104623 NEL 0.0200 10/14/19 14:26 JLL SM4500-NO3-F 2011 Nitrate as N (NO3N) <0.0200 mg/L 0.0200 Austin [CALC] NEL Nitrite as N <0.01 J (0.007) 0.002 0.002 0.01 Austin 10/10/19 10:33 JLL SM4500 NO2- B 2011 mg/L M104538 NEL Nitrate/Nitrite as N < 0.02 mg/L 0.02 0.02 0.02 Bryan 10/14/19 14:26 MRB SM4500-NO3-F 2011 M104654 INF Fluoride 1.01 mg/L 0.04 0.04 0.10 Bryan 10/17/19 13:30 PNS SM4500-F C 2011 M104809 NEL pH. Lab 7.4 S.U. Hold-03 N/A 10/11/19 10:50 MSA SM4500-H+ B 2011 N/A Austin M104612 DWP Temperature @ pH Analysis 19.6 Deg. C N/A N/A Austin 10/11/19 10:50 MSA SM4500-H+ B 2011 M104612 DWP Specific Conductance (adjusted to 693 uS/cm 2.00 2.00 2.00 10/18/19 08:35 CJO SM2510 B 2011 Bryan M104874 DWPNEL 25.0°C) Metals (Total) 0.577 mg/L 0.002 0.001 0.005 Bryan 10/21/19 15:49 PNS EPA 200.7 R4.4 Iron M104818 NEL Manganese 11.7 ug/L 0.108 0.135 0.625 Bryan 10/17/19 22:14 MRG EPA 200.8 R5.4 M104675 NEL General Chemistry Sulfate as SO4 154 mg/L P* 0.01 3 3 Sub 10/11/19 21:01 ANA EPA 300.0 SUB NEL 10.7 Chloride mg/L 0.01 3 Sub 10/11/19 21:01 ANA EPA 300.0 SUB NEL C032980-01 - re-analysis Result Units Notes MDL Adj MDL SQL Lab Analyzed Method Batch General Chemistry Total Hardness (EDTA) as CaCO3 500 mg/L C-02 1.00 1.00 1.00 Bryan 10/31/19 11:30 MRH SM2340 C 2011 M104995 NFI **Explanation of Notes** A-01 Optional LCS was outside expected range, causing RPD to be greater than expected. Results accepted on one required passing LCSD and sample matrix RPD. C-02 Result confirmed by re-analysis.

 V-V2
 Result confirmed by re-analysis.

 Hold-03
 This parameter was outside of EPA holding at the time the sample was received in the laboratory.

 J
 Analyte detected below the SQL but above the MDL.

 P*
 Spike recovery outside control limits due to matrix effects

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 11/1/19

Report Printed:

C032980

9:18

				C	General C	Chemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
-Iuoride - SM4500-I	C 2011													Brya
Initial Cal Check	0.33	mg/L				10/17/19 13:30 PNS	0.356		91.9	90 - 110			1910193	
Blank	<0.10	mg/L		0.04	0.10	10/17/19 13:30 PNS							M104809	
LCS	0.80	mg/L		0.04	0.10	10/17/19 13:30 PNS	0.798		99.6	90 - 110			M104809	
LCS Dup	0.79	mg/L		0.04	0.10	10/17/19 13:30 PNS	0.798		98.7	90 - 110	0.884	6.23	M104809	
Matrix Spike	4.65	mg/L		0.04	0.10	10/17/19 13:30 PNS	0.798	3.89	95.2	78.1 - 125			M104809	
Matrix Spike Dup	4.71	mg/L		0.04	0.10	10/17/19 13:30 PNS	0.798	3.89	103	78.1 - 125	7.59	10	M104809	
MRL Check	<0.10	mg/L	J (0.09)	0.04	0.10	10/17/19 13:30 PNS	0.0998		93.2	73.4 - 118			M104809	
Nitrate/Nitrite as N	- SM4500-N	D3-F 2011												Brya
Initial Cal Check	1.21	mg/L				10/14/19 14:26 MRB	1.15		106	90 - 110			1910149	
Low Cal Check	0.02	mg/L				10/14/19 14:26 MRB	0.0200		82.1	70 - 130			1910149	
Blank	< 0.02	mg/L		0.02	0.02	10/14/19 14:26 MRB							M104654	
LCS	0.49	mg/L		0.02	0.02	10/14/19 14:26 MRB	0.500		97.7	91.3 - 109			M104654	
LCS Dup	0.49	mg/L		0.02	0.02	10/14/19 14:26 MRB	0.500		98.8	91.3 - 109	1.16	6.8	M104654	
Matrix Spike	0.56	mg/L		0.02	0.02	10/14/19 14:26 MRB	0.500	<0.02	111	94.1 - 111			M104654	
Matrix Spike Dup	0.52	mg/L		0.02	0.02	10/14/19 14:26 MRB	0.500	<0.02	104	94.1 - 111	6.56	8.65	M104654	
Nitrite as N - SM450	0 NO2- B 2	011												Aust
Initial Cal Check	0.07	mg/L				05/29/19 12:06 KT	0.0725		102	90 - 110			1905274	
Blank	<0.01	mg/L		0.002	0.01	10/10/19 10:33 JLL							M104538	
LCS	0.08	mg/L		0.002	0.01	10/10/19 10:33 JLL	0.0800		102	90 - 110			M104538	
LCS Dup	0.09	mg/L		0.002	0.01	10/10/19 10:33 JLL	0.0800		108	90 - 110	5.44	8.12	M104538	
Matrix Spike	0.09	mg/L		0.002	0.01	10/10/19 10:33 JLL	0.0800	0.01	95.9	70.6 - 117			M104538	
Matrix Spike Dup	0.09	mg/L		0.002	0.01	10/10/19 10:33 JLL	0.0800	0.01	95.0	70.6 - 117	0.922	8.18	M104538	
MRL Check	0.01	mg/L		0.002	0.01	10/10/19 10:33 JLL	0.0100		122	70 - 130			M104538	
pH, Lab - SM4500-H	I+ B 2011													Aust
Duplicate	7.4	Std Units	Hold-03			10/11/19 10:50 MSA		7.4			0.136	2.05	M104612	
Reference	6.9	Std Units				10/11/19 10:50 MSA	6.86		101	95 - 105			M104612	
Reference	9.1	Std Units				10/11/19 10:50 MSA	9.18		98.8	95 - 105			M104612	
Reference	6.9	Std Units				10/11/19 10:50 MSA	6.86		101	95 - 105			M104612	
Reference	9.1	Std Units				10/11/19 10:50 MSA	9.18		99.5	95 - 105			M104612	
Specific Conductar	ice (adjuste	d to 25.0°C) - S	SM2510 B 2011											Brya
Initial Cal Check	487	uS/cm				10/18/19 08:35 CJO	472		103	85 - 115			1910211	
Blank	<2.00	uS/cm		2.00	2.00	10/18/19 08:35 CJO							M104874	
Duplicate	694	uS/cm		2.00	2.00	10/18/19 08:35 CJO		693			0.144	2	M104874	
LCS	1410	uS/cm		2.00	2.00	10/18/19 08:35 CJO	1410		100	90 - 110			M104874	

Form: C:\ELMNT\FORMAT\ATL 103119 FIN_LS.RPT

Page 3 of 14 C032980_1 ATL 103119 FIN_ls 11 01 19 0918

Analytical Report

9:18

Apex Drilling **Report Printed:** 11/1/19 C032980

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

					General (Chemistry - Quality Co								
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Total Dissolved Sol	ids - SM254	0 C 2011											B	Bryan
Blank	<25.0	mg/L		25.0	25.0	10/11/19 15:15 MRH							M104623	
Duplicate	526	mg/L		50.0	50.0	10/11/19 15:15 MRH		516			1.92	9.13	M104623	
Reference	508	mg/L		100	100	10/11/19 15:15 MRH	500		102	81 - 121			M104623	
Total Hardness (ED	TA) as CaC(D3 - SM2340	C 2011										В	Bryan
Blank	<1.00	mg/L		1.00	1.00	10/17/19 11:54 MRH							M104817	
Duplicate	184	mg/L		1.00	1.00	10/17/19 11:54 MRH		186			1.08	9.52	M104817	
LCS	98.0	mg/L		1.00	1.00	10/17/19 11:54 MRH				90 - 110			M104817	
LCS Dup	98.0	mg/L		1.00	1.00	10/17/19 11:54 MRH				90 - 110		6.47	M104817	
Matrix Spike	284	mg/L		1.00	1.00	10/17/19 11:54 MRH		186		87.6 - 111			M104817	
MRL Check	4.00	mg/L		1.00	1.00	10/17/19 11:54 MRH				70 - 130			M104817	
Initial Cal Check	56.0	mg/L				10/22/19 10:11 MRH	54.4		103	85 - 115			1910241	
Initial Cal Check	54.0	mg/L				10/31/19 11:30 MRH	54.4		99.3	85 - 115			1910341	
Blank	<1.00	mg/L		1.00	1.00	10/31/19 11:30 MRH							M104995	
Duplicate	40.0	mg/L		1.00	1.00	10/31/19 11:30 MRH		40.0			0.00	9.52	M104995	
LCS	98.0	mg/L		1.00	1.00	10/31/19 11:30 MRH	100		98.0	90 - 110			M104995	
LCS Dup	100	mg/L		1.00	1.00	10/31/19 11:30 MRH	100		100	90 - 110	2.02	6.47	M104995	
Matrix Spike	140	mg/L		1.00	1.00	10/31/19 11:30 MRH	100	40.0	100	87.6 - 111			M104995	
MRL Check	4.00	mg/L		1.00	1.00	10/31/19 11:30 MRH	4.00		100	70 - 130			M104995	

					Metals	(Total) - Quality Cont	rol		Metals (Total) - Quality Control												
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch								
Iron - EPA 200.7 F	R4.4												1	Bryan							
Blank	<0.005	mg/L		0.001	0.005	10/21/19 15:29 PNS							M104818								
LCS	1.70	mg/L	A-01	0.001	0.005	10/21/19 15:32 PNS	0.500		339	84.5 - 115.4			M104818								
LCS Dup	0.501	mg/L	A-01	0.001	0.005	10/21/19 15:35 PNS	0.500		100	84.5 - 115.4	109	20	M104818								
Duplicate	<0.100	mg/L	J (0.068)	0.020	0.100	10/21/19 15:39 PNS		<0.100			1.07	20	M104818								
Matrix Spike	9.48	mg/L		0.020	0.100	10/21/19 15:42 PNS	10.0	0.067	94.1	69.5 - 130.4			M104818								
Manganese - EPA	200.8 R5.4												I	Bryan							
Blank	<0.625	ug/L		0.135	0.625	10/17/19 20:23 MRG							M104675								
LCS	5.04	ug/L		0.135	0.625	10/17/19 20:34 MRG	5.00		101	84.5 - 115.4			M104675								
LCS Dup	4.94	ug/L		0.135	0.625	10/17/19 20:45 MRG	5.00		98.8	84.5 - 115.4	1.98	20	M104675								
Duplicate	4.83	ug/L		0.135	0.625	10/17/19 20:55 MRG		4.65			3.79	20	M104675								
Matrix Spike	8.13	ug/L		0.135	0.625	10/17/19 21:06 MRG	5.00	4.65	69.6	69.5 - 130.4			M104675								

CORPORATE OFFICE

Phone: (979) 778-3707

Fax: (979) 778-3193

Bryan, TX 77807

635 Phil Gramm Boulevard

CORPORATE OFFICE

635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

Apex Drilling **Report Printed:** 11/1/19

9:18 C032980

Preparation Procedures - Quality Control														
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Turbidity - SM2130	B 2011													Bryan
Initial Cal Check	6.1	NTU				10/02/19 10:00 MRH	6.55		92.8	90 - 110			1910020	
Low Cal Check	1.1	NTU				10/02/19 10:00 MRH	1.02		110	70 - 130			1910020	

Sample Preparation Summary External Dilution												
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch		
C032980-01												
Fluoride	SM4500-F C 2011	10/17/19 10:09 PNS	Bryan	А	25.0	mL	25.0	mL	1	M104809		
Iron	EPA 200.7 R4.4	10/17/19 12:03 PNS	Bryan	В	50.0	mL	25.0	mL	1	M104818		
Manganese	EPA 200.8 R5.4	10/14/19 15:01 AOG	Bryan	В	50.0	mL	25.0	mL	2.5	M104675		
Nitrate/Nitrite as N	SM4500-NO3-F 2011	10/14/19 9:15 MRB	Bryan	D	10.0	mL	10.0	mL	1	M104654		
Nitrite as N	SM4500 NO2- B 2011	10/10/19 10:33 JLL	Austin	С	25.0	mL	25.0	mL	1	M104538		
pH, Lab	SM4500-H+ B 2011	10/11/19 10:50 MSA	Austin	С	50.0	mL	50.0	mL	1	M104612		
Sample Acidified to pH<2 in Lab	N/A	10/9/19 12:10 KK	Bryan	D	100	mL	100	mL	1	M104533		
Specific Conductance (adjusted to 25.0°C) SM2510 B 2011	10/18/19 8:35 CJO	Bryan	Α	25.0	mL	25.0	mL	1	M104874		
Temperature @ pH Analysis	SM4500-H+ B 2011	10/11/19 10:50 MSA	Austin	С	50.0	mL	50.0	mL	1	M104612		
Total Dissolved Solids	SM2540 C 2011	10/11/19 15:15 MRH	Bryan	Α	50.0	mL	100	mL	1	M104623		
Turbidity	SM2130 B 2011	10/14/19 13:35 AOG	Bryan	В	10.0	mL	10.0	mL	1	M104670		
See sub-contract reports for preparation in	nformation of subcontracted analyses.											
C032980-01RE1												
Sample Acidified to pH<2 in Lab	N/A	10/9/19 12:10 KK	Bryan	В	100	mL	100	mL	1	M104531		
Total Hardness (EDTA) as CaCO3	SM2340 C 2011	10/31/19 11:30 AOG	Bryan	В	50.0	mL	50.0	mL	1	M104995		

Bryan Lat	5: L
-----------	------

635 Phil Gramm Blvd.

Bryan, Texas 77807

Phone: (979) 778-3707

Austin Lab: 7500 W. Hwy. 71, Suite 105 Austin, Texas 78735 Phone: (512) 301-9559 Email: corp@aqua-techlabs.com

C-O-C #

295190

V-0023 R01

Chain-of-Custody & Analysis Request Fax: (979) 778-3193

Client / Project Name:					* DEFINIT	IONS: DW - Drir CM - Cu	nking Water stody Maintair	NP - Non-Potable Water ed CTU – Custody Transfer Unbroken	S – Solid	LAB U	SE ONLY (ir	itials XL)
Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres. +	Analysis Request			ottle Sub- pH contract	Lab ID #
()			Grab	DW	0.12L	St P	1,5	Total Coliform & E.coli P/A	cl	友-		C032981-014
MHI #8	10-8-19	r ganarina.	G	DW	2412	P		NUZ NUJPH CI Cond	FFe /	-	- Anu	(032982-014,
MHTE8	10-8-19							Hundmarca Min Cart T	rK I			an a the state of
	5							NEE NEE	142-			
								ech Laboratories' NELAC fields of accreditati r analytes not requiring accreditation will be a rent list of Aqua-Tech's NELAC fields of accr				hin Aqua-Tech's fields of is required, the client will note
Relinquished by: (print & sign)	Client ATL Fi	eld 🔲 Sampler				Sample Info X° all that apply	Rec'd by: (pr	nt & sign) Client DATL Field		-		Sample Info "X" all that apply
MZ			Date /0-	-9-19	12:00 8	I Iced I Chilled/Refrig Cust. Sealed Not Chilled		NEW			Date 1	ime GRec'd Chilled Cond Good CTU * I ced in Transit
Relinquished by: (print& sign)]Client	eld	Date		Time 0		Rec'd by: (pri	nt & sign) Client D ATL Field			Date T	ime Cond Chilled
Relinquished by: (print & sign)]Client □ATL Fie	ld arrival in Lab	Date		Time D	Iced Chilled/Refrig CM *	Rec'd by: (pri	nt & sign) PReceived in Kab	۲۰۰۰ میں ۲۰۰۰ ۲۵ میں ۲۰۰۰ الدوج	/		Inced in mansit ime Effect load I Not Rec'd load Effect u * Effond Good
Field Sample ID	Time pH	D.O.	Cl ₂	Flow	Client Add	dress and Ph		IUWSAI . C	Client Commo	ents:		JerCond Good
			*****		Apex Dri PO Box 8 Marble F	lling 367 alls, TX 786	354	1				
					Phone: 8	30-798-273						
					Fax: 830	-798-2703						
pH Paper ID#:	¹ ≤ 6	$^{\rm o}{ m C}$ (not frozen)	2 = H ₂ SO	4		3 = HCI		4 = HNO ₃	Laboratory Co	mments:		2
ອ 5 = Na ₂ S ₂ O ₃ ຍິ	6 = NaOH		7 =	nhad in the annual sequence of the second		8 =	******	9 =				
(Line below documents condition at			n. Lab location r						Long to the second s			
Cooler ID: Temp °C: 7.1	17.1	T Therm ID:	570	Cooler ID	:	Temp °C:	/	CT Them ID:				

LELAP-accredited #02008

Report

3 4 5

1

2

Table of Contents

Printed 10/18/2019

Page 1 of 1

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

	This report consists of this Table of Contents and the following pages:	
Report Name 893651_r03_03_ProjectResults	Description Ana-Lab Project P:893651 C:AQU5 Project Results t:304	Pages 2
893651_r03_06ProjectTRRP	Ana-Lab Project P:893651 C:AQU5 Project TRRP Results Report for Class	2
893651_r10_05_ProjectQC	Ana-Lab Project P:893651 C:AQU5 Project Quality Control Groups	1
893651_r99_09_CoC1_of_1	Ana-Lab CoC AQU5 893651_1_of_1	2
	Calabrating Total Pages:	7

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

13	Ana-Lab Corp.	P.O. Box 9000	Kilgore	TX 75663	Rej	port Page 2 of
ANA-LAB	Phone 903/984-0551 FAX		orp@ana-lab.c egrity Caring	om Continual Improver	ment	
CORP.	Results	Printed: 10/18/2019	9:31			Page 1 of 89365
			Acc	count		
Report To			AQ	U5-C		
Aqua-Tech Laboratories (Aus	stin					
John Brien 635 Phil Gramm Blvd.						
Bryan, TX 77807-9104						
J., ,		Results				
1828377 C032980-01					Received:	10/11/2019
						10/11/2019
Drinking Water	Collected by: Client Taken: 10/08/2019 1'	Aqua-Tech Labor 7:00:00	atori	PC):	
EPA 300.0 2.1	Pre	pared: 863540 10/11/20	21:01:00	Analyzed 863540	10/11/2019	21:01:00 A
Parameter	Resul	ts Units	L	Flag	CAS	Bottle
V Chloride	10.7	8	.00	D		01
√ Sulfate	154	8	.00	Р		01
		Sample Preparat	ion			
1828377 C032980-01					Received:	10/11/2019
Cooler Return	Pre	pared: 10/16/20	9 17:00:00	Analyzed	10/16/2019	17:00:00 W
Return Cooler/No bottles Requ		URNED				

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

	Ana-Lab Corp.	. P.O. Box 9000 Kilgore, TX 75663	Report Page 3 of 8
INA-LAB	Phone 903/984-0551 FA	X 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caring Continual Improvement	
COKP.	Results	Printed: 10/18/2019 9:31	Page 2 of 2 893651

Qualifiers:

TH

P - Spike recovery outside control limits due to matrix effects.

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

Bill Peery, MS, VP Technical Services

1

4 5

	Ana-Lab Co	orp. P.O.	. Box 9000	Kilgore, T	X 75663							Report	aye 4 01 o
ANALAR I	Phone 903/984-0	551 FAX 903/	/984-5914 e-Mail	corp@ana-lab.co	m				L	ELAP-ac	credited #(02008	
COKP			\mathbf{D}_{aaa}	c Current	100 0 101	•		Printed 10	0/18/20)19	Page 1 of	f 2	
THE COMPLETE SERVICE LAB			Result	s Sum	mary	/		Р	ro	ject		893651	
Aqua-Tech Laboratories (Au John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104	ıstin				DW				•				
<u>CAS</u>	Parameter			Results	MDL	SDL	MQL	MQLAdj	Flag	g Units	Target	Bottle	Dilute
Drinking Water			Ion Chromatog	raphy				E	PA 30	0.0 2.1			
1828377	C032980-01												
				Collection:	10/08/20	19	17:00:00	Client			Received	10/11/	2019
Prepa	ared:	863540											
						Analyzed:		863540		10/11/19	21:01:00		
	Chloride			10.7	0.0053	0.053	0.300	3.00		mg/L	250 Secondary Standard	01	10.00
	Sulfate			154	0.00775	0.0775	0.300	3.00	Р	mg/L	250 Secondary Standard	01	10.00
	ection Limit (40 CFR 13					SDL is Sample		it and is the adjuste		· · ·			

MQL is the Method Quantitation Limit and corresponds to a low standard *Qualifiers:*

MQLADJ is the Adjusted Method Quantitation Limit (dilutions, dry weight)

P - Spike recovery outside control limits due to matrix effects.

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP, T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation. These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

Results Summary

DW

 LELAP-accredited #02008

 Printed
 10/18/2019
 Page 2 of 2

 Project
 893651

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

Bill Poor

Bill Peery, MS, VP Technical Services

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

LDSClient v1.14.42.1840

www.ana-lab.com

ed #02008	P-accredi	LELA	com	@ana-lab.c	e-Mail corp	84-5914	X 903/98	-0551 FA	Phone 903/984	AL AR
	ement	tinual Improve	ng Con	Carin	Integrity	wned	oloyee O	Emp		
Page 1 of 1 893651		/2019	nted 10/18	Prii	01	ntro	y Co	uality	Q	
			Account							eport To
		7	QU5-C	A						ua-Tech Laboratories (Au
										nn Brien 5 Phil Gramm Blvd. yan, TX 77807-9104
EPA 300.0 2.									863540	Analytical Set
						Blank				
		File			Units	MQL	MDL	Reading	PrepSet	<u>Parameter</u>
		120491628			mg/L	0.300	0.0053	0.226	863540	Chloride
		120491628			mg/L	0.300	0.00775	ND	863540	Sulfate
						CCV				
		File		Limits%	Recover%	Units	Known	Reading		Parameter
		120491624		90.0 - 110	101	mg/L	10.0	10.1		Chloride
					102	mg/L	10.0	10.3		
		120491639		90.0 - 110	103					0.10
				90.0 - 110 90.0 - 110	103	mg/L	10.0	10.1		Sulfate
		120491639				0	10.0 10.0	10.1 10.1		Sulfate
		120491639 120491624		90.0 - 110	101 101	mg/L				Sulfate
RPD Limit%	Units	120491639 120491624	LCS%	90.0 - 110	101 101	mg/L mg/L			PrepSet	Sulfate <u>Parameter</u>
<i>RPD</i> <i>Limit%</i> 1.81 20.0	<i>Units</i> mg/L	120491639 120491624 120491639	<i>LCS%</i> 98.6	90.0 - 110 90.0 - 110	101 101 IP	mg/L mg/L	10.0	10.1	PrepSet 863540	
		120491639 120491624 120491639 <i>LCSD%</i>		90.0 - 110 90.0 - 110 <i>Limits%</i>	101 101 IP <i>Known</i>	mg/L mg/L	10.0 <i>LCSD</i>	10.1 <i>LCS</i>	-	<u>Parameter</u>
1.81 20.0	mg/L	120491639 120491624 120491639 <i>LCSD%</i> 100	98.6	90.0 - 110 90.0 - 110 <i>Limits%</i> 85.0 - 110	101 101 IP <i>Known</i> 5.00	mg/L mg/L	10.0 <i>LCSD</i> 5.02	10.1 <i>LCS</i> 4.93	863540	<u>Parameter</u> Chloride
1.81 20.0	mg/L	120491639 120491624 120491639 <i>LCSD%</i> 100	98.6	90.0 - 110 90.0 - 110 <i>Limits%</i> 85.0 - 110	101 101 IP <i>Known</i> 5.00	mg/L mg/L LCS Du	10.0 <i>LCSD</i> 5.02	10.1 <i>LCS</i> 4.93	863540	<u>Parameter</u> Chloride
1.8120.01.5720.0	mg/L mg/L	120491639 120491624 120491639 <i>LCSD%</i> 100 103	98.6 101	90.0 - 110 90.0 - 110 <i>Limits%</i> 85.0 - 110 88.0 - 110	101 101 IP 5.00 5.00	mg/L mg/L LCS Du	10.0 <i>LCSD</i> 5.02 5.13	10.1 <i>LCS</i> 4.93 5.05	863540 863540	<u>Parameter</u> Chloride Sulfate

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank; CCV - Continuing Calibration Verification

ACCOA

NELAP-accredited #T104704201-19-15

ACO.A

v

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Page 12 of 14 C032980_1 ATL 103119 FIN_Is 11 01 19 0918

Report Page 7 of 8

1 of 2

Analysis Request for: AJL - Bryan Facility: 635 Phil Gramm Blvd. Bryan, TX 77607 (979) 778-3727 Fax (979) 778-3193 All analyses must be performed by a TNI approved method certified by the TCEQ. Contact ATL's sample custodian via voice and email if your methods do not meet this criteria. **QUA-TECH** LABORATORIES, INC. ATL - Austrn Facility: 7500 Hwy 71 W, Suite 105 Austin, TX 78735 (312) 301-9559 Fax (512) 301-8552 Sample ID: C032980-01 SO4 DW - EPA 300.0 Ana-Lab Corp. (NELAP Cert. T104704201) 2600 Dudley Road Kilgore, TX 75662 Phone: (903) 984-0551 Fax: (903) 984-5914 SHIPPED TO: Sampled: 10/08/19 17:00 Chain-of-Custody & Analysis Request į Matrix: Drinking Water ÷ Laboratory ID >> 638 - C032980 0-0-0 # 5252 Page 1 of 1 T10470437

CONTAINERS SUPPLIED: Chloride - EPA 300.0) C032980-01 [E] - CI SO4 0.5LP (ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.)

893651 CoC Print Group 001 of 001

Intrastrige Main Main </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Arstin MyL-Bryan Sample Abt Cooler 1: aqu5 - zy0167Kh Abt Ved in Lao Cooler 1: aqu5 - zy0167Kh Code Time Sample Info Ved in Lao Cooler 1: aqu5 - zy0167Kh Sample Info Ved in Lao Cooler 1: aqu5 - zy0167Kh Sample Info Cooler 1: aqu5 - zy0167Kh Code Time Sample Info Code Time Sample Info C		Austin Facility		N/A	N/A	N/A
Arstin JyTL-Bryan Sampler I all Sample I all Samp		P lease return cooler(s) to:	·			Cooler 1
Arstin		corp@aqua-techlabs.com	Themometer ID	Corrected Temp. (CT)	Temp: Reed (TR)	Cooler Temperature (*C)
Austin JyrL-Bryan Sampler Jolly John Time Tood Abt V Cooler 1: aqu5 - zy0167Kh Sample I'o V Sa	CORTINE A DEPART	Please email reports to:	listed above,	ipt in lab (shipped to)	ts condition ay foco	Line below documen
grip X (ATI -A: scin DyTL-Bryan Sample: Date Time Time Time Time Time Time Abb SKi /// // // // // // // // // // // // //		0840			84.70 /	Ketty Terror Ana-Lab
n Savign) 🕱 ATL-Arisetin in JTL-Brijsen Sample: 10/10/10 1000 Time Tood Abb DWSKI // Cooler 1: aqu5 - zy0167Kh // Cooler 1: aqu5 - zy0167Kh // Sample Info miser. // Cooler 1: aqu5 - zy0167Kh // Sample Info	5 DAY TAT	Time Kecaved load		N	La reveived in Lab	Steived by: (print & sign)
gn) XATI-A:ssin	Aqua-Tech Comments and Special Instructions		aquo - zyutiork			Lone Star
XATLA:scin //L-Bryan Sampler Date, Time Tised Abbreviations: DW-Driving Water	S - Solid CTU - Custody Thansfer Unbroken IG - Liter Glass	10/mil 1 000				artiar & Tracking Number.
	11 CF		,	$\frac{2}{2}$		Kellv Kukowski
	Abbreviations: DW-Driving Water	Time	Sample:	//L-Bryan	🗙 ATI -Austin	irq:/ished by. (print & sign)

2 of 2

893651 CoC Print Group 001 of 001

TU///2019 nttps://www.iso.com/Webiabels///abeisize=0&combinediabei=1&sessionkey=%/15/63343CA-2/11-1/26-68E3-715/146585536%/15

Fold on above line and place shipping label in pouch on package. Please be sure the barcodes and addresses can be read and seanned. Shipping Instructions

- 1. Fold this page along the horizontal line above.
- 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To locate a drop box near you, click on Find A Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone Star Overnight account number.

This tabel is valid for use for 3 months from the date printed. Use of expired tabels may result in delayed billing and *l* or additional research charges. LIMIT OF LIABILITY: We are not responsible for claims in excess of \$160 for any reason unless you: 1) declare a greater value (not to exceed \$25,000); 2) pay

an additional fee; 3) and document your actual loss in a timely manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential famages. Additional finitations of flability are contained in our critest Service Guide. If you ask us to deliver a package without obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR 8:30 AM DELIVERY SIGNATURE WILL DELIVERYES.

Water Quality

Well No. 9

Email information for report date: 10/2/19 11:58

C031485

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

TCEQ DW Lab ID TX 239

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 3 C031485 2 ATL 030419 FIN Is 10 02 19 1158

CORPORATE OFFICE					AUSTIN	OFFICE						Analytica	l Report
635 Phil Gramm Boulevard Bryan, TX 77807	KQQL	JA-	TECH	7500 H	lwy 71 W, Si Austin, TX								x Drilling
Phone: (979) 778-3707 Fax: (979) 778-3193	LAB	LABORATORIES, INC.			one: (512) 30 Fax: (512) 30				Report Printed:			10/2/19	11:58
1 4. (373) 770-3133		Collected: 09/26/19 12:30 by CLIE			ax. (512) 50	1-3332	_						C031485
MAJESTIC HILLS II NO9			l: 09/26/19 12:30 by CLIE l: 09/26/19 15:50 by Kelly			<i>Type</i> Grab			<i>Matrix</i> Drinking	Water	C-O-C # 295031		
Lab ID# C031485-01	Result	Units	Notes	MDL	Adj MDL	SQL	Lab	Analyzed		Method		Batch	
Microbiological Analyses													
Total Coliforms	Absent	N/A		N/A	N/A	N/A	Austin	09/26/19 16:21	JLL	SM9223 B 2004		M103953	NEL
Escherichia coli (E.coli)	Absent	N/A		N/A	N/A	N/A	Austin	09/26/19 16:21	JLL	SM9223 B 2004		M103953	NEL

				М	icrobiolog	ical Analyses - Q	uality Control				Log10 C	omparison		
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli (E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	09/26/19 15:33 JL	L						M103953	
Total Coliforms -	SM9223 B 200)4												Austin
Blank	Absent	N/A		N/A	N/A	09/26/19 15:33 JL	L						M103953	

		Sample Prep	aration Sum	nary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C031485-01										
Escherichia coli (E.coli)	SM9223 B 2004	9/26/19 16:20 JLL	Austin	А	100	mL	100	mL	1	M103953
Total Coliforms	SM9223 B 2004	9/26/19 16:20 JLL	Austin	А	100	mL	100	mL	1	M103953

Chain-of-Custody &			635 P Bryan Phone	n <i>Lab:</i> hil Gramm , Texas 77 e: (979) 778- (979) 778-	7807 78-3707	7500 Austi Phon	<i>tin Lab:</i> W. Hwy. 71, S n, Texas 7873 e: (512) 301-9 l: corp@aqua-1	5 559	C-O-C #	295031		AN A AN	all of the second	V-0023 R01
Client / Project Name:						* DEFINIT	IONS: DW - Drin		NP - Non-Potable Water		LAB	USE ONLY	(initials	W.
Field Sample ID		tart / Time	End Date / Time	Compo		Container Volume	Party and a second s	stody Maintain Sample Pres. +	ed CTU – Custody Transfer		Cooler	Bottle Sub		Lab ID #
		1 11116	Date / Time	Grab	DW	0.12L	St P	1, 5	Total Coliform & E.o		COL	- Contra	h:	21485-014
MHIIK9	9-2	519	12:30						BACTURIA 1	//s				<u></u>
				1					M	<u>H</u>				
By relinquishing the above sample accreditation will be subcontracted the method in the "Analysis Reque	to a NEL/	AC certified lat	b that is certified	for that meth	nod. Clients will be	notified of the	subcontract lab's	s details. Othe	r analytes not requiring accredi	ation will be analyzed by a	compendial meth	hod. If a specific meth	od is require	Fech's fields of d, the client will note
Relinquished by (print & sign)]Client	ATL Field	I 🗌 Sampler	ſ	Date 7-26-19	Time	Sample Info X" all that apply I Iced Chilled/Refrig I Cust. Sealed	Rec'd by: (pr	nt & sign) Client AT	L Field		Date	Time	Sample Info "X" all that apply Rec'd Chilled Cond Good CTU *
Relinquished by: (print & sign)] Client	ATL Field	I		Date	Time	Not Chilled Chilled/Refrig	Rec'd by: (pri	nt & sign) Client AT	C Field	an.	Date	Time	Iced in Transit Rec'd Chilled Cond Good CTU ° Iced in Transit
Relinquished by: (print & sign)	Client	ATL Field	arrival in Lab		Date	Time 🖸		Rec'd by: (pri Kelly Ku	nt & sign) TReceived in Lab Ikowski			Data g/Zee/19	Time 1555	Diced in Harsit
Field Sample ID	Time	pH	D.O.	Cl ₂	Flow	Apex Dri PO Box			l l	Client C	omments:			
							330-798-273 -798-2703	39						
pH Paper ID#:			C (not frozen)	2 =	H ₂ SO ₄		3 = HCI		4 = HNO3	Laborato	ry Commen	ts:		, and the second se
5 = Na ₂ S ₂ O ₃	e	3 = NaOH		7 =			8 =		9 =					
(Line below documents condition at Cooler ID: Temp *C:	receipt in L	aboratory by CT	Therm ID:	an. Labloc SS7C	Cooler IC		f C-O-C.) Temp ℃:	/	CT Therm ID:					

Page 3 of 3 C031485_2 ATL 030419 FIN_Is 10 02 19 1158

Email information for report date: 10/3/19 07:32

C030744

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director **CORPORATE OFFICE** 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

BORATOR

TCEQ DW Lab ID TX 239

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Austin, TX 78735 Bryan, TX 77807 **Report Printed:** 10/3/19 7:32 Phone: (979) 778-3707 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C030744 C-O-C # Matrix **MAJESTIC HILLS II NO9** Collected: 09/19/19 12:30 by CLIENT Type Received: 09/19/19 15:20 by Kelly Kukowski Grab **Drinking Water** 294873 Lab ID# C030744-01 Result Units Notes MDL Adj MDL SQL Lab Analyzed Method Batch General Chemistry **Total Dissolved Solids** 694 mg/L 25.0 50.0 50.0 Bryan 09/25/19 12:46 MRH SM2540 C 2011 M103858 NEL 0.0200 09/24/19 11:23 JLL SM4500-NO3-F 2011 Nitrate as N (NO3N) <0.0200 mg/L 0.0200 Austin [CALC] NEL Nitrite as N <0.01 SM4500 NO2- B 2011 J (0.002) 0.002 0.002 0.01 Austin 09/20/19 09:13 JLL mg/L M103683 NEL Nitrate/Nitrite as N < 0.02 mg/L 0.02 0.02 0.02 Bryan 09/24/19 11:23 MRB SM4500-NO3-F 2011 M103792 INF Total Hardness (EDTA) as CaCO3 525 mg/L 1.00 1.00 2.50 Bryan 09/27/19 09:08 MRH SM2340 C 2011 M103870 NEL Fluoride 3.42 0.04 0.04 0.10 09/24/19 14:03 PNS SM4500-F C 2011 mg/L Brvan M103801 NEL pH, Lab 7.3 S.U. Hold-03 N/A N/A Austin 09/23/19 08:40 MSA SM4500-H+ B 2011 M103743 DWP Temperature @ pH Analysis 22.4 Deg. C N/A N/A Austin 09/23/19 08:40 MSA SM4500-H+ B 2011 M103743 DWP Specific Conductance (adjusted to 961 uS/cm 2.00 2.00 2.00 Bryan 09/26/19 13:24 CJO SM2510 B 2011 M103943 DWP,NEL 25.0°C) Metals (Total) 0.186 Iron 0.002 0.001 0.005 Bryan 10/01/19 20:43 PNS EPA 200.7 R4.4 mg/L M103946 NEL 2.23 Manganese ug/L 0.108 0.135 0.625 Bryan 09/26/19 19:29 MRG EPA 200.8 R5.4 M103867 NEL General Chemistry <3 Sulfate as SO4 mg/L J* (1.35) 0.01 3 3 Sub 09/20/19 16:04 ANA EPA 300.0 SUB NEL Chloride <3.00 mg/L 0.02 3 Sub 09/20/19 16:04 ANA EPA 300.0 NEL SUB **Explanation of Notes** Hold-03 This parameter was outside of EPA holding at the time the sample was received in the laboratory. J Analyte detected below the SQL but above the MDL.

J* Analyte detected below quantitation limit

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 10/3/19 7:32

Report Printed:

C030744

				C	General C	Chemistry - Quality Co	ontrol							
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	RPD	RPD Limit	Batch	
Fluoride - SM4500-I	C 2011													Bryan
Initial Cal Check	0.34	mg/L				09/24/19 14:03 PNS	0.356		95.2	90 - 110			1909230	
Blank	<0.10	mg/L		0.04	0.10	09/24/19 14:03 PNS							M103801	
LCS	0.82	mg/L		0.04	0.10	09/24/19 14:03 PNS	0.798		102	90 - 110			M103801	
LCS Dup	0.84	mg/L		0.04	0.10	09/24/19 14:03 PNS	0.798		105	90 - 110	2.42	6.23	M103801	
Matrix Spike	5.33	mg/L		0.04	0.10	09/24/19 14:03 PNS	0.798	4.43	113	78.1 - 125			M103801	
Matrix Spike Dup	5.35	mg/L		0.04	0.10	09/24/19 14:03 PNS	0.798	4.43	115	78.1 - 125	2.20	5.72	M103801	
/IRL Check	0.11	mg/L		0.04	0.10	09/24/19 14:03 PNS	0.0998		106	73.4 - 118			M103801	
Nitrate/Nitrite as N	SM4500-N	O3-F 2011												Bryan
nitial Cal Check	1.23	mg/L				09/24/19 11:23 MRB	1.15		107	90 - 110			1909228	
ow Cal Check	0.02	mg/L				09/24/19 11:23 MRB	0.0200		117	70 - 130			1909228	
Blank	<0.02	mg/L		0.02	0.02	09/24/19 11:23 MRB							M103792	
CS	0.47	mg/L		0.02	0.02	09/24/19 11:23 MRB	0.500		94.6	90 - 110			M103792	
CS Dup	0.46	mg/L		0.02	0.02	09/24/19 11:23 MRB	0.500		91.0	90 - 110	3.85	6.8	M103792	
Matrix Spike	1.09	mg/L		0.02	0.02	09/24/19 11:23 MRB	0.500	0.56	107	94.1 - 111			M103792	
Matrix Spike Dup	1.09	mg/L		0.02	0.02	09/24/19 11:23 MRB	0.500	0.56	106	94.1 - 111	1.04	8.65	M103792	
Nitrite as N - SM450	0 NO2- B 2	011												Austin
nitial Cal Check	0.07	mg/L				05/29/19 12:06 KT	0.0725		102	90 - 110			1905274	
Blank	<0.01	mg/L		0.002	0.01	09/20/19 09:13 JLL							M103683	
CS	0.08	mg/L		0.002	0.01	09/20/19 09:13 JLL	0.0800		101	90 - 110			M103683	
CS Dup	0.08	mg/L		0.002	0.01	09/20/19 09:13 JLL	0.0800		105	90 - 110	3.41	8.12	M103683	
Matrix Spike	0.07	mg/L		0.002	0.01	09/20/19 09:13 JLL	0.0800	0.002	92.1	70.6 - 117			M103683	
Matrix Spike Dup	0.07	mg/L		0.002	0.01	09/20/19 09:13 JLL	0.0800	0.002	93.5	70.6 - 117	1.42	8.18	M103683	
MRL Check	0.01	mg/L		0.002	0.01	09/20/19 09:13 JLL	0.0100		100	70 - 130			M103683	
oH, Lab - SM4500-H	l+ B 2011													Austin
Duplicate	7.0	Std Units	Hold-03			09/23/19 08:40 MSA		6.9			0.288	2.05	M103743	
Reference	7.0	Std Units				09/23/19 08:40 MSA	6.86		103	95 - 105			M103743	
Reference	9.2	Std Units				09/23/19 08:40 MSA	9.18		100	95 - 105			M103743	
Reference	7.0	Std Units				09/23/19 08:40 MSA	6.86		102	95 - 105			M103743	
Reference	9.2	Std Units				09/23/19 08:40 MSA	9.18		99.8	95 - 105			M103743	
Specific Conductar	ice (adjuste	d to 25.0°C) - S	M2510 B 2011											Bryan
	479	uS/cm				09/26/19 13:24 CJO	472		101	85 - 115			1909272	
nitial Cal Check		uS/cm		2.00	2.00	09/26/19 13:24 CJO							M103943	
	<2.00	uorum												
Initial Cal Check Blank Duplicate	<2.00 425	uS/cm		2.00	2.00	09/26/19 13:24 CJO		424			0.236	2	M103943	

Form: C:\ELMNT\FORMAT\ATL 030419 FIN_LS.RPT

Page 3 of 13 C030744_1 ATL 030419 FIN_ls 10 03 19 0732

Analytical Report

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Apex Drilling 10/3/19

Report Printed:

C030744

Bryan

7:32

						-	Spike	Source				RPD		
	Result	Units	Notes	MDL	SQL	Analyzed	Amount	Result	%R	%R Limits	RPD	Limit	Batch	
otal Dissolved So	lids - SM254	0 C 2011												Bryan
Blank	<25.0	mg/L		25.0	25.0	09/25/19 12:46 MRH							M103858	
Duplicate	110	mg/L		25.0	25.0	09/25/19 12:46 MRH		111			0.905	9.13	M103858	
Reference	560	mg/L		100	100	09/25/19 12:46 MRH	500		112	81 - 121			M103858	
Total Hardness (ED	TA) as CaC	O3 - SM2340	C 2011											Bryan
Initial Cal Check	58.0	mg/L				09/27/19 09:08 MRH	54.4		107	85 - 115			1909282	
Low Cal Check	3.00	mg/L				09/27/19 09:08 MRH	4.00		75.0	70 - 130			1909282	
Blank	<1.00	mg/L		1.00	1.00	09/27/19 09:08 MRH							M103870	
Duplicate	530	mg/L		1.00	2.50	09/27/19 09:08 MRH		525			0.948	9.52	M103870	
LCS	98.0	mg/L		1.00	1.00	09/27/19 09:08 MRH	100		98.0	90 - 110			M103870	
LCS Dup	98.0	mg/L		1.00	1.00	09/27/19 09:08 MRH	100		98.0	90 - 110	0.00	6.47	M103870	
Matrix Spike	618	mg/L		1.00	2.50	09/27/19 09:08 MRH	100	525	92.5	87.6 - 111			M103870	
MRL Check	3.00	mg/L		1.00	1.00	09/27/19 09:08 MRH	4.00		75.0	70 - 130			M103870	
					Motolo	(Total) Quality Cont	rol							
						(Total) - Quality Cont	Spike	Source				RPD		
	Result	Units	Notes	MDL	SQL	Analyzed	Amount	Result	%R	%R Limits	RPD	Limit	Batch	
ron - EPA 200.7 R4	.4													Bryan
Blank	<0.005	mg/L		0.001	0.005	10/01/19 20:27 PNS							M103946	
LCS	0.466	mg/L		0.001	0.005	10/01/19 20:30 PNS	0.500		93.1	84.5 - 115.4			M103946	
LCS Dup	0.486	mg/L		0.001	0.005	10/01/19 20:33 PNS	0.500		97.1	84.5 - 115.4	4.19	20	M103946	
Duplicate	0.170	mg/L		0.001	0.005	10/01/19 20:37 PNS		0.186			8.90	20	M103946	
Matrix Spike	0.609	mg/L		0.001	0.005	10/01/19 20:40 PNS	0.500	0.186	84.5	69.5 - 130.4			M103946	
Manganese - EPA 2	200.8 R5.4													Bryan
Blank	<0.625	ug/L		0.135	0.625	09/26/19 18:05 MRG							M103867	
LCS	5.06	ug/L		0.135	0.625	09/26/19 18:48 MRG	5.00		101	84.5 - 115.4			M103867	
LCS Dup	4.70	ug/L		0.135	0.625	09/26/19 18:58 MRG	5.00		94.0	84.5 - 115.4	7.31	20	M103867	
Duplicate	2.39	ug/L		0.135	0.625	09/26/19 19:08 MRG		2.23			7.28	20	M103867	
Matrix Spike	7.44	ug/L		0.135	0.625	09/26/19 19:18 MRG	5.00	2.23	104	69.5 - 130.4			M103867	
							0							
				Dro	naration	Drocoduroe - Ouglity								
				Pre	paration	Procedures - Quality	Spike	Source				RPD		

Turbidity - SM2130 B 2011

CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707

Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

Analytical Report

10/3/19

Report Printed:

7:32 C030744

Apex Drilling

		Sample Prep	aration Sum	mary					External Dilution	
Sample	Method	Prepared	Lab	Bottle	Initial	Units	Final	Units	Factor	Batch
C030744-01										
Fluoride	SM4500-F C 2011	9/24/19 10:01 PNS	Bryan	I	25.0	mL	25.0	mL	1	M103801
Iron	EPA 200.7 R4.4	9/26/19 14:13 PNS	Bryan	F	50.0	mL	25.0	mL	1	M103946
Manganese	EPA 200.8 R5.4	9/25/19 12:24 AKS	Bryan	F	50.0	mL	25.0	mL	2.5	M103867
Nitrate/Nitrite as N	SM4500-NO3-F 2011	9/24/19 9:17 MRB	Bryan	н	10.0	mL	10.0	mL	1	M103792
Nitrite as N	SM4500 NO2- B 2011	9/20/19 9:13 JLL	Austin	G	25.0	mL	25.0	mL	1	M103683
pH, Lab	SM4500-H+ B 2011	9/23/19 8:40 MSA	Austin	G	50.0	mL	50.0	mL	1	M103743
Sample Acidified to pH<2 in Lab	N/A	9/19/19 16:20 KK	Bryan	н	100	mL	100	mL	1	M103695
Specific Conductance (adjusted to 25.0	°C) SM2510 B 2011	9/26/19 13:24 CJO	Bryan	I	25.0	mL	25.0	mL	1	M103943
Temperature @ pH Analysis	SM4500-H+ B 2011	9/23/19 8:40 MSA	Austin	G	50.0	mL	50.0	mL	1	M103743
Total Dissolved Solids	SM2540 C 2011	9/25/19 12:46 MRH	Bryan	I	50.0	mL	100	mL	1	M103858
Total Hardness (EDTA) as CaCO3	SM2340 C 2011	9/25/19 12:36 AKS	Bryan	F	50.0	mL	50.0	mL	1	M103870
Turbidity	SM2130 B 2011	9/24/19 15:09 RNH	Bryan	F	10.0	mL	10.0	mL	1	M103816
See sub-contract reports for preparation	n information of subcontracted analyses.									
C030744-01RE1										
Sample Acidified to pH<2 in Lab	N/A	9/19/19 16:20 KK	Bryan	F	100	mL	100	mL	1	M103696

Chain-of-Custody & A		Bryan Lab 635 Phil Gra Bryan, Texa Phone: (979 5t Fax: (979) 7	mm Blvd. s 77807 9) 778-3707	7500 Aúst Phor	tin Lab:) W. Hwy. 71, 5 in, Texas 7873 he: (512) 301-9 il: corp@aqua-	5 559	C-O-C #	[#] 294873		and account		V-0023 R01
Client / Project Name: M	ASTOSTIC	H. Ils It		* DEFINIT	IONS: DW - Drir	nking Water stody Maintaine	NP - Non-Potable V d CTU – Custody Trai		LAB	USE ONLY	(initials	11/
Field Sample ID	Start	End Cor	nposite Sample Type Matrix*	Container	and the second se	Sample Pres.	· · · · · · · · · · · · · · · · · · ·	s Requested	Cooler ID	Bottle Su pH cont	b-	Lab ID #
MUTT #9	7-19-19	- (2/1	1 05	P		Mand	F Fe NOSNO	-			2-404-0
	12:30	- 7	- DAG		$+ \rightarrow$	1/1	IPS all	C In I	INAT		-tA	BRACD
				0.00	600	1/2	MART	SOY tladress			- K.	npui ·
			- /	0122	1ST1	K121	1 Otal Col	Horm P/A			(2	30 163-011
							Ar					
									_			an a state and the birth of the state of the

Relinquished by: (print & sign) Cli Relinquished by: (print & sign) Clie Relinquished by: (print & sign) Clie Field Sample ID T	ent 🗌 ATL Field	Sampler ival in Lab D.O. Cla	Date F1 F1 F1 Date Date	Time [15:20] Time [Time] Time] Time] Time] Time] Time] Time] Time]	Sample Info X' all that apply leed Chilled/Refrig Ust Sealed Not Chilled Chilled/Refrig Chilled/Refrig Not Chilled Chilled/Refrig CM * Not Chilled dress and Ph	Ree'd by: (prin Rec'd by: (prin Kelly k		2	Comments:	Date Date Date 9/19/19	Time Time Time	Sample Info "X" all that apply Rec'd Chilled Cond Good CTU * Iced in Transit Rec'd Chilled Cond Good CTU * Iced in Transit Rec'd Iced Not Rec'd Iced CTU * Fred Iced
					per E		5		onninents.			
pH Paper ID#:	1 ≤ 6 °C	(not frozen)	2 = H ₂ SO ₄		3 = HCI		4 = HNO3	Laborato	ory Comme	nts:		
9 5 ≓ Na₂S₂O₃	6 = NaOH		7 =		8 =		9 =					
(Line below documents condition at rec Cooler 10: Cooler 10: Cool	/ ст	ample Custodian. Lat Therm ID: 0715	Cooler		of C-O-C.) Temp °C:		CT Therm ID:					

Page 6 of 13 C030744_1 ATL 030419 FIN_Is 10 03 19 0732

LELAP-accredited #02008

Report

3 4 5

2

Table of Contents

Printed 09/23/2019

Page 1 of 1

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

	This report consists of this Table of Contents and the following pages:	
Report Name 890916_r03_03_ProjectResults	Description Ana-Lab Project P:890916 C:AQU5 Project Results t:304	Pages 1
890916_r03_06_ProjectTRRP	Ana-Lab Project P:890916 C:AQU5 Project TRRP Results Report for Class	2
890916_r10_05_ProjectQC	Ana-Lab Project P:890916 C:AQU5 Project Quality Control Groups	1
890916_r99_09_CoC1_of_1	Ana-Lab CoC AQU5 890916_1_of_1	2
	Celebrating Total Pages:	6

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662 ACCORC

NELAP-accredited #T104704201-19-15

Page 7 of 13 C030744_1 ATL 030419 FIN_ls 10 03 19 0732 Phone 903/984

	Ana-Lab Corp	. P.O. Box 9000	Kilgore, TX 75663	Report Page 2 of 7
ANA-LAB	Phone 903/984-0551 FA	X 903/984-5914 e-Mail co Employee Owned Integ		ovement
THE COMPLETE SERVICE LAB	Results	Printed: 09/23/2019	17:57	Page 1 of 1 890916
Report To			Account AQU5-C	
Aqua-Tech Laboratories (Aus John Brien 635 Phil Gramm Blvd.	tin			
Bryan, TX 77807-9104		Results		

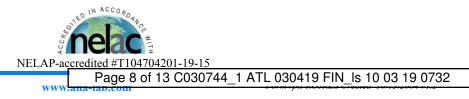
	1821951	C030744-01									Received:	09/20/2019	
Ι	Drinking Water		Collected by Taken: 09	: Client 0/19/2019 12:30:00	Aqua	-Tech L	aboratori			PO.			
E	EPA 300.0 2.1			Prepared:	859788	09/20	0/2019	16:04:00	Analyzed	859788	09/20/2019	16:04:00	AMB
	Parameter			Results	ι	Units	RL		Flag		CAS	Botti	le
Ν	Chloride			<3.00	n	ng/L	3.00					01	
Ν	Sulfate			1.35	n	ng/L	3.00		J			01	

Qualifiers:

J - Analyte detected below quantitation limit

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.


RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

500

Bill Peery, MS, VP Technical Services

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

2

4 5

	Ana-l	L <mark>ab Corp.</mark>	P.O. Box 9000	Kilgore, T	X 75663	5						Report	Page 3 of
ANALAR I	Phone 9	003/984-0551 FA	X 903/984-5914 e-Ma	il corp@ana-lab.co	om				L	ELAP-ac	credited #	02008	
COKP.			Resul	ts Sum	mara	7		Printed 0	9/23/20)19	Page 1 c	'f 2	
THE COMPLETE SERVICE LAB			itosui	is Duill	mary	/		Р	ro	ject	t	89091	6
Aqua-Tech Laboratories (Au John Brien 635 Phil Gramm Blvd.	stin				DW				•				
Bryan, TX 77807-9104 <u>CAS</u>	Parame	ter		Results	MDL	SDL	MQL	MQLAdj	Flag	g Units	Target	Bottle	Dilute
Drinking Water			Ion Chromato	graphy				Е	EPA 30	0.0 2.1			
<mark>1821951</mark>	<mark>C030744</mark> -	-01											
				Collection:	09/19/20)19	12:30:00	Client			Received	l: 09/20	0/2019
Prepa	red:	859788											
						Analyzed:		859788		9/20/19	16:04:00		
	Chlorid	le		ND	0.0196	0.196	0.300	3.00		mg/L	250 Secondary Standard	01	10.
	Sulfate			1.35	0.0109	0.109	0.300	3.00	J	mg/L	250 Secondary Standard	01	10.
MDL is Method Dete	ction Limit	(40 CFR 136 Append	ix B)			SDL is Sampl		it and is the adjust					

MQL is the Method Quantitation Limit and corresponds to a low standard Qualifiers:

MQLADJ is the Adjusted Method Quantitation Limit (dilutions, dry weight)

J - Analyte detected below quantitation limit

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No L4026, Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under NELAC scope of accreditation. These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

Results Summary

DW

LELAP-accredited #02008 Printed 09/23/2019 Page 2 of 2 Project 890916

Aqua-Tech Laboratories (Austin John Brien 635 Phil Gramm Blvd. Bryan, TX 77807-9104

Bill Poory

Bill Peery, MS, VP Technical Services

Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Central TX Region: 6448 Hwy 290 E STE A-106 Austin TX 78723

www.ana-lab.com

ted #02008	?-accredit	LELAI	om	ana-lab.c	e-Mail corp@	84-5914	.X 903/9	-0551 FA	Phone 903/984	AL AR
	Printed 09/23/2019 Account AQU5-C I ank File mg/L 120401226 mg/L 120401226 mg/L 120401226 mg/L 120401226 CV File 96.9 90.0 - 110 120401223 96.1 90.0 - 110 120401223 97.8 90.0 - 110 120401223 98.9 90.0 - 110 120401223 98.0 90.0 - 110 120401223 97.8 90.0 - 110 120401223 98.0 90.0 - 110 120401223 97.8 90.0 - 110 120401223 98.0 90.0 - 110 120401223 97.8 90.0 - 110 120401251 SD Known Limits% LCS% LCSD% Units RPI 5.00 85.0 - 110 101 101 mg/L 0.15 SD Known Limits< MS%	wned	ployee O	Emp						
Page 1 of 1 890916		2019	nted 09/23/2	Prir	01	ontro	/ Co	uality	Qı	
			Account							
										eport To
				11					stin	ua-Tech Laboratories (A m Brien 5 Phil Gramm Blvd. yan, TX 77807-9104
EPA 300.0 2.									859788	Analytical Set
						Blank				
		File			Units	MQL	MDL	Reading	PrepSet	<u>Parameter</u>
		120401226			mg/L	0.300	0.0196	ND	859788	Chloride
		120401226			mg/L	0.300	0.0109	ND	859788	Sulfate
						CCV				
		File		Limits%	Recover%	Units	Known	Reading		<u>Parameter</u>
		120401223		90.0 - 110	96.9	mg/L	10.0	9.69		Chloride
		120401240		90.0 - 110	96.1	mg/L	10.0	9.61		
		120401251		90.0 - 110	97.0	mg/L	10.0	9.70		
		120401223		90.0 - 110	98.9	mg/L	10.0	9.89		Sulfate
		120401240		90.0 - 110	97.8	mg/L	10.0	9.78		
		120401251		90.0 - 110	98.0	mg/L	10.0	9.80		
					ıp	LCS Du				
RPD Limit%	Units	LCSD%	LCS%	Limits%	Known		LCSD	LCS	PrepSet	Parameter
0.198 20.0	mg/L	101	101	85.0 - 110	5.00		5.04	5.05	859788	Chloride
0 20.0	mg/L	104	104	88.0 - 110	5.00		5.20	5.20	859788	Sulfate
						MSD				
RPD Limit%	Units	MSD%	MS%	Limits	Known	UNK	MSD	MS	Sample	<u>Parameter</u>
4.55 20.0	mg/L	90.0	86.0	80.0 - 120	10.0	48.2	57.2	56.8	1821233	Chloride
	mg/I	90.0	88.0	80.0 - 120	10.0	13.0	22.0	21.8	1821233	Sulfate
2.25 20.0	1112/12	90.0	00.0							
2.2520.03.6420.0	-				10.0	48.3	56.4	56.7	1821238	Chloride

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

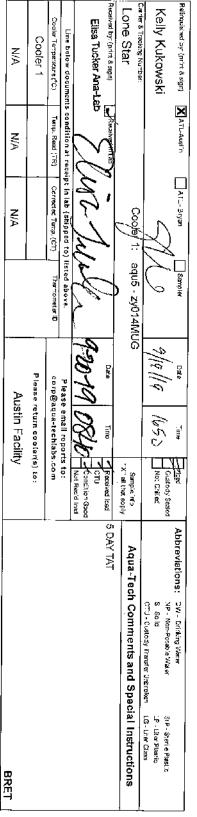
Recover% is Recovery Percent: result / known * 100%

Blank - Method Blank; CCV - Continuing Calibration Verification

ACCOA

NELAP-accredited #T104704201-19-15

ACO.A


Corporate Shipping: 2600 Dudley Rd. Kilgore, TX 75662

Page 11 of 13 C030744_1 ATL 030419 FIN_Is 10 03 19 0732

Report Page 6 of 7

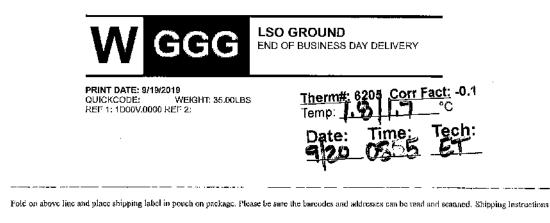
1 of 2

Relinquished by (print & sign) CONTAINERS SUPPLIED Kelly Kukowski ATL - Bryan Facility 635 Phil Gramm Bivd. Bryan, TX 77607 (979) 778-8707 Fax (979) 778-5193 Chloride - EPA 300.0 Analysis Request for.) C030744-01 [E] - CI SO4 0.5LP Tracking # and Temp See Attached for All analyses must be performed by a TNI approved method centified by the TCEQ. Contact ATL's sample custodian via voice and email if your methods do not meet this criteria. **QUA-TECH** LABORATORIES, INC. X ATL-Austin ATL - Austin Facility: 7509 Hwy 71 W, Suite 105 Austin, TX 78735 (512) 301-9559 Fax (\$12) 301-9552 Sample ID: C030744-01 🗌 A 🗀 - Bryan . SO4 DW - EPA 300.0 (ATL indicates cooler number in parentheses for each container - only required if more than one cooler listed below.) Ana-Lab Corp. (NELAP Cert. T104704201) 2600 Dudley Road Kilgore, TX 75662 Fax: (903) 984-5914 Phone: (903) 984-0551 SHIPPED TO: Sampler Sampled: 09/19/19 12:30 0 2/18/19 Date Chain-of-Custody & Analysis Request 650 Matrix: Drinking Water Not Chilled Gustody Sealed Abbreviations: DW - Drinking Water 709 - C030744 Laboratory ID >> C-O-C # NP - Non-Potable Water CTU - Custody Transfer Unbroken S Sold 56128 LG - Liter Plastic LG - Liter Class StP - Sterile Plastic Page 1 of 1 T10470437

890916 CoC Print Group 001 of 001

2 3 4

1


890916 CoC Print Group 001 of 001

9/19/2019 Ditps://www2.kso.com/webiaoels//rabeisize=u&combinediabel=_t&sessionkey=%/bb/vuty_uuty_tuty_bradue=bAurtes//76/2010

LSO 1-800-800-8984 www.lso.com 2 of 2

SHIP TO: RECEIVING ANA LAB CORP 2600 DUDLEY RD KILGORE, TX 75662 9039840551 From: K KUKOWSKI AOUA-TECHLABORATORIES, INC. 7600 W FWY 71 SUITE 105 AUSTIN, TX 78735 5123019559

- 1. Fold this page along the horizontal line above.
- 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To locate a drop box near you, click on Find A Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional bitling charges, along with the cancellation of your Lone Star Overnight account number.

This label is valid for use for 3 months from the date printed. Use of expired labels may result in delayed billing and / or additional research charges. LIMIT OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) declare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss in a limety manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a package willout obtaining a delivery signature, you release us of all liability for chains resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR 8:30 AM DELIVERIES OR RESIDENTIAL DELIVERIES.

Water Quality

Well No. 10

Email information for report date: 10/2/19 12:44

10/2/19 12:44

C031260

Apex Drilling

Attn: Michael Becker apexdrilling.becker@yahoo.com

PO Box 867 Marble Falls, TX 78654

Due to the increase in operational costs, Aqua-Tech Laboratories will be implementing a slight price increase. The new price list will be effective June 1, 2019.

Aqua-Tech values you as a customer and encourages you to speak with accounting staff at 979-778-3707 ext. 4 or accounting@aqua-techlabs.com if you have questions.

Thank you for your business, June M. Brien Executive Technical Director CORPORATE OFFICE 635 Phil Gramm Boulevard Bryan, TX 77807 Phone: (979) 778-3707 Fax: (979) 778-3193

AUSTIN OFFICE 7500 Hwy 71 W, Suite 105 Austin, TX 78735 Phone: (512) 301-9559 Fax: (512) 301-9552

The analyses summarized in this report were performed by Aqua-Tech Laboratories, Inc. unless otherwise noted. Aqua-Tech Laboratories, Inc. holds accreditation from the State of Texas in accordance with TNI and/or through the TCEQ Drinking Water Commercial Laboratory Approval Program.

The following abbreviations indicate certification status:

- NEL TNI accredited parameter.
- ANR Accreditation not required by the State of Texas.
- DWP Accreditation through the TCEQ Drinking Water Commercial Laboratory Approval Program.
- INF Aqua-Tech Laboratories, Inc. is not accredited for this parameter. It is reported on an informational basis only.

Subcontracted data summarized in this report is indicated by "Sub" in the Lab column.

General Definitions:

- NR Not Reported.
- RPD Relative Percent Difference.
- % R Percent Recovery.
- dry Results with the "dry" unit designation are reported on a "dry weight" basis.
- SQL The Sample Quantitation Limit is the value below which the parameter cannot reliably be detected. The SQL includes all sample preparations, dilutions and / or concentrations.
- Adj MDL The Adjusted Method Detection Limit is the MDL value adjusted for any sample dilutions or concentrations .
 - MDL The Method Detection Limit is the lowest theoretical value that is statistically different from zero for a specific method, taking into account all preparation steps and instrument settings.

All samples are reported on an "as received" basis unless the designation "dry" is added to the reported unit.

Copies of Aqua-Tech Laboratories, Inc. procedures and individual sampling plans are available upon request. Note that samples are collected by Aqua-Tech Laboratories, Inc. personnel unless otherwise noted in the "Sample Collected" field of this report as "Client" or "CLT".

Samples included in this report were received in acceptable condition according to Aqua-Tech Laboratories, Inc. procedures and 40 CFR, Chapter I, Subchapter D, Part 136.3, TABLE II. - *Required containers, preservation techniques, and holding times*, unless otherwise noted in this report.

Record Retention:

All reports, raw data, and associated quality control data are kept on file for 10 years before being destroyed. Any client that would like copies of records must contact Aqua-Tech Laboratories, Inc. no later than six months prior to the scheduled disposal. An administrative fee for retrieval and distribution will apply.

This report was approved by:

June M. Brin June M. Brien. Technical Director

The results in this report apply only to the samples analyzed. This analytical report must be reproduced in its entirety unless written permission is granted by Aqua-Tech Laboratories, Inc.

corp@aqua-techlabs.com

www.aqua-techlabs.com

Page 1 of 3 C031260 2 ATL 030419 FIN Is 10 02 19 1244

TCEQ DW Lab ID TX 239

Analytical Report CORPORATE OFFICE AUSTIN OFFICE QUA-TECH LABORATORIES, INC. 635 Phil Gramm Boulevard 7500 Hwy 71 W, Suite 105 **Apex Drilling** Bryan, TX 77807 Austin, TX 78735 Phone: (979) 778-3707 **Report Printed:** 10/2/19 12:44 Phone: (512) 301-9559 Fax: (979) 778-3193 Fax: (512) 301-9552 C031260 Collected: 09/24/19 11:00 by CLIENT C-O-C # Type Matrix **MAJESTIC HILLS II NO4** Received: 09/24/19 16:00 by Kelly Kukowski Grab **Drinking Water** 294952 Lab ID# C031260-01 Result Units Notes MDL Adj MDL SQL Lab Analyzed Method Batch Microbiological Analyses Total Coliforms Absent N/A N/A N/A N/A Austin 09/24/19 16:35 JLL SM9223 B 2004 M103821 NEL Escherichia coli (E.coli) N/A N/A N/A N/A Austin 09/24/19 16:35 JLL SM9223 B 2004 Absent M103821 NEL C-O-C # **MAJESTIC HILLS II NO10** Collected: 09/24/19 11:30 by CLIENT Туре Matrix Received: 09/24/19 16:00 by Kelly Kukowski Grab **Drinking Water** 294952 Lab ID# C031260-02 Units Notes MDL Adj MDL SQL Method Result Lab Analyzed Batch Microbiological Analyses **Total Coliforms** Absent N/A N/A N/A SM9223 B 2004 N/A 09/24/19 16:35 JLL Austin M103821 NEL Escherichia coli (E.coli) Absent N/A N/A N/A N/A Austin 09/24/19 16:35 JLL SM9223 B 2004 M103821 NEL

				Micr	obiologi	cal Analyses - Quality	y Control				Log10 C	omparison		
	Result	Units	Notes	MDL	SQL	Analyzed	Spike Amount	Source Result	%R	%R Limits	Range	Control Limit	Batch	
Escherichia coli	(E.coli) - SM92	23 B 2004												Austin
Blank	Absent	N/A		N/A	N/A	09/24/19 16:35 JLL							M103821	
Total Coliforms -	SM9223 B 200)4												Austin
Blank	Absent	N/A		N/A	N/A	09/24/19 16:35 JLL							M103821	

	External Dilution									
Sample	Method	Prepared	Prepared Lab Bottle Initial Units Final Units							
C031260-01										
Escherichia coli (E.coli)	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821
Total Coliforms	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821
C031260-02										
Escherichia coli (E.coli)	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821
Total Coliforms	SM9223 B 2004	9/24/19 16:34 JLL	Austin	А	100	mL	100	mL	1	M103821

Chain-of-Custody & A		635 Pt Bryan, Phone	n Lab: Lab: Lab: nil Gramm Blvo Texas 77807 : (979) 778-37 979) 778-3193	707	7500 V Austin Phone	in Lab: N. Hwy. 71, S , Texas 78735 :: (512) 301-95 corp@aqua-t	5 559	с-о-с# 2949	152		al and a second	THI ANTONY	≋ V-0023 R01
Client / Project Name:					* DEFINITIO	DNS: DW - Drin CM Cus	king Water tody Maintain		S – Solid	LAB	USE ONL	Y (initials	Khe)
Field Sample ID	Start Date / Time	End Date / Time	Composite Type	Sample Matrix*	Container Volume	Container Type	Sample Pres.	Analysis Requeste		Cooler ID		Sub- ontract	Lab ID #
MIH EL	 Application of the limit of an article strategy and the second strategy and strategy and the second strategy and strategy and the second		Grab	DW	0.12L	St P	1, 5		NARK			10.000 (constraints) (constraints) (constraints) (constraints) (constraints) (constraints) (constraints) (const	danamatan kana sa kana
" EL	9-24-19	11:00		ØW	11	ρ		SEC 47 Mn NO3 NO	3 SUYDS	of/	- <u>ci</u> soy	Any Co	31243-01A
MUTT 4. U	9-24-18	11:00	C 14	OW	0.12L	Str	15	Boit.		07			014
MITANID	9.24.19	11:30	17	DW	NAL	STP	1.5	BACT		7	and the second	í (î	121-07A
1HH GO		71.00	ľ		1 Miles			มและและไม่ได้และครามมีเสียงเห็นของการการการการการการการการการการการการการก	a south sub or conversion of the				an an ann an Anna an An Anna an Anna an A
								NEEKS					agamiento antico de la construcción
					Constant Constant Constant Constant								
	Client OATL Fi	əld arrival in Lab	Date 9.4 Date Date Cl ₂	24.19	Time		Rec'd by: (pr Kelly	Int & sign) Client BATL Field Int & sign) CReceived in Lab Kukowski	Uient Co	mments:	Date Date Date G /ZU	Time Time 19 160	*X" all that ap PREC Chille C Cnd Good CTU * I cod in Tran Rec'd Chille C Cnd Good CTU * I cod in Tran PRec'd Icd Not Rec'd Icd PCTU * PCOnd Good
					Phone: 8	alls, TX 78 330-798-27 -798-2703			Laborator	v Commei	nis		
pH Paper ID#:	1 ≤ ($3 {}^{\mathrm{o}}\mathrm{C}$ (not frozen)	2 = H ₂ S	₩¥		3 = HCI		4 = HNU3		,			
5 = Na ₂ S ₂ O ₃ (Line below documents condition at	6 = NaOH		7 = ian. Lab location	n noted by che	eck box at top o	8 = of C-O-C.) Temp °C:		9 =					

October 8, 2019

MICHAEL BECKER APEX DRILLING PO BOX 867 Marble Falls, TX 78654 apexdrilling.becker@yahoo.com

RE: Final Analytical Report Q1963233

Attn: MICHAEL BECKER

Enclosed are the analytical results for sample(s) received by LCRA Environmental Laboratory Services. Results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the body of the report. This final report provides results related only to the sample(s) as received for the above referenced work order.

Thank you for selecting ELS for your analytical needs. If you have any questions regarding this report, please contact us at (512) 730-6022. We look forward to assisting you again.

Authorized for release by:

Leavy

Ariana Dean Account Manager ariana.dean@lcra.org

Enclosures:

Sample Summary

LCRA Environmental Laboratory Services 3505 Montopolis Drive Austin, TX 78744 Phone: (512) 730-6022 Fax: (512) 730-6021

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received
Q1963233001	MAJESTIC II 10	DW	E200.7 Metals, Trace Elements	9/10/2019 11:30	9/11/2019 08:00
Q1963233001	MAJESTIC II 10	DW	E200.8, ICP-MS	9/10/2019 11:30	9/11/2019 08:00
Q1963233001	MAJESTIC II 10	DW	E2340B, Hardness Calc.	9/10/2019 11:30	9/11/2019 08:00
Q1963233001	MAJESTIC II 10	DW	E300.0, Anions	9/10/2019 11:30	9/11/2019 08:00
Q1963233001	MAJESTIC II 10	DW	SM2540C, TDS	9/10/2019 11:30	9/11/2019 08:00
Q1963233001	MAJESTIC II 10	DW	SM4500-H+B, pH @ 25ºC	9/10/2019 11:30	9/11/2019 08:00
Q1963233001	MAJESTIC II 10	DW	SM9223, IDEXX	9/10/2019 11:30	9/11/2019 08:00

Report Definitions

MRL - Minimum Reporting Limit LOD - Limit of Detection

ML - Maximum Limit - Client Specified

MCL - Maximum Contaminant Level

MDL - Method Detection Limit

LOQ - Limit of Quantitation - Client Specified

DF - Dilution Factor

Qual - Qualifier

(S) - Surrogate Spike

QC Qual - red font indicates Result Value outside acceptable range

B- Analyte detected in method blank

S - Spike recovery outside limit

R - RPD outside duplicate precision limit

J - Analyte detected below quantitation limit

RPD - Relative Percent Difference

Project Summary

Sample Analysis Comments

Lab ID: Q1963233001

Sample ID: MAJESTIC II 10

- Not Accredited Hardness
- Not Accredited Residual Chlorine
- Not Accredited Temperature
- Not Accredited pH

LCRA Environmental Laboratory Services 3505 Montopolis Drive Austin, TX 78744 Phone: (512) 730-6022 Fax: (512) 730-6021

Analytical Results

Lab ID: /	Q1963233001		Data P		0/11/	2010.09		N.4.	atrix: Drinking Wat	or	
				•							
Sample ID:	MAJESTIC II 10		Date C	ollected:	9/10/2	2019 11	:30 San	nple I	ype: SAMPLE		
Project ID: /	APEX SAMPLES	3									
Parameter		Results Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qual
INORGANICS	(E200.7 Prep/E	E200.7 Metals, Trace Elem	ents)								
Iron Total		<0.0500 mg/L	0.0500	0.0200		1	09/16/19 10:03	ME	09/16/19 19:22	FM	
INORGANICS	(E200.8, ICP-N	IS Prep/E200.8, ICP-MS)									
Manganese Tot	al	0.00214 mg/L	0.00100	0.0004		1	09/16/19 10:08	ME	09/20/19 13:49	FO	
INORGANICS	(E2340B, Hard	Iness Calc.)									
Hardness		524 mg/L				1			10/08/19 09:38	CW	*
INORGANICS	(E300.0, Anior	ıs)									
Chloride		11.5 mg/L	1.00	0.500		1			09/11/19 09:15	ML	
Fluoride		3.91 mg/L		0.0250	4	5			09/11/19 10:50	ML	
Nitrate (as N)		0.0159 mg/∟	0.0100	0.0050	10	1			09/11/19 09:15	ML	
Sulfate		231 mg/L	5.00	2.50		5			09/11/19 10:50	ML	
TOTAL DISSOL	VED SOLIDS	(SM2540C, TDS)									
Total Dissolved Solids(TDS)		654 mg/L	25.0	10.0		10			09/13/19 11:10	ML	
Total Coliform	by Colilert (S	M9223, IDEXX)									
Residual Chlori	ne	<0.5 mg/L				1			09/11/19 16:23	ME	*

Residual Chlorine	<0.5 mg/L			1	09/11/19 16:23	ME	*
Total Coliform	Present P/A	1.00	1.00	1	09/11/19 16:23	ME	
Ecoli	Absent P/A	1.00	1.00	1	09/11/19 16:23	ME	
рН (SM4500-Н+В, рН @ 25	ºC)						
рН	7.67 pH	0.00	0.00	1	09/19/19 15:25	ME	*
Temperature	20.2 c			1	09/19/19 15:25	ME	*

Sample Comments

•

Sample Type: SAMPLE

General Comments for METHOD SM4500-H+B, pH - Defined as a field parameter, measurement must be taken within 15 minutes of collection. Results are provided for information purposes only.

Quality Control

Preparation Batch: M Preparation Method: E2 Associated Lab IDs: Q	200.8, ICP-MS		Analys	is Method:	: E200.8, ICP-MS
Method Reporting Limit Ch	eck (1341030)				
Parameter	Units	Spiked	Spike	Spike	Control

Parameter	Units	Amount	Result	Recovery	Limits
Manganese Total	mg/L	.001	0	103	50 - 150

Quality Control (cont.)

Preparation Batch: MET / 7376	Analysis Method:	E200.7 Metals, Trace Elements	
Preparation Method: E200.7 Metals	, Trace Elements		
Associated Lab IDs: Q1963233001			

Method Reporting Limit Check (1335952)

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits
Iron Total	mg/L	.05	.05	106	50 - 150

Preparation Batch Preparation Method Associated Lab IDs	: E200.7 Prep		Analys	is Method:	E200.7 Metals, Trace Elements			
Laboratory Reagent Bla	nk (1335753)							
Parameter	Results	Units	MRL	LOD	Qualifier			
Iron Total	<0.0500	mg/L	0.0500	0.0200				
Laboratory Fortified Bla	nnk (1335754)							
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control / Limits			
Iron Total	mg/L	1	1	100	85 - 115			
Laboratory Fortified Matrix (1335758) Original: Q1962882004								
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control / Limits			
Iron Total	mg/L	1	.97	97	70 - 130			

Preparation Batch:	WET / 20456
Preparation Method:	E300.0, Anions
Associated Lab IDs:	Q1963233001

Laboratory Reagent Blank (1332931)

	• •				
Parameter	Results	Units	MRL	LOD	Qualifier
Chloride	<1.00	mg/L	1.00	0.500	
Fluoride	< 0.0100	mg/L	0.0100	0.00500	
Nitrate (as N)	<0.0100	mg/L	0.0100	0.00500	
Sulfate	<1.00	mg/L	1.00	0.500	

Method Reporting Limit Check (1332933)

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits
Chloride	mg/L	1	.76	76	50 - 150
Fluoride	mg/L	.01	.01	115	50 - 150
Nitrate (as N)	mg/L	.01	.01	65	50 - 150
Sulfate	mg/L	1	.94	94.1	50 - 150

Analysis Method: E300.0, Anions

Laboratory Fortified Blank (1332934)

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits
Chloride	mg/L	30	31	103	90 - 110
Fluoride	mg/L	1	.99	99.4	90 - 110
Nitrate (as N)	mg/L	1	1.07	107	90 - 110
Sulfate	mg/L	30	30.9	103	90 - 110

Limit of Quantitation Check (1332935)

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits
Chloride	mg/L	5	4.17	83.3	70 - 130
Fluoride	mg/L	.02	.02	96	70 - 130
Nitrate (as N)	mg/L	.02	.02	94	70 - 130
Sulfate	mg/L	5	4.54	90.8	70 - 130

Laboratory Fortified Matrix (1333186) Original: Q1963233001

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits
Chloride	mg/L	20	33.1	108	80 - 120
Fluoride	mg/L	1	4.59	67.8	80 - 120
Nitrate (as N)	mg/L	1	1.62	161	80 - 120
Sulfate	mg/L	20	211	-100	80 - 120

Preparation Batch: WE	Г / 20474		Analys	is Method:	SM2540C	, TDS
Preparation Method: SM2	2540C TDS		-			
•						
Associated Lab IDs: Q19	63233001					
Method Blank (1335309)						
Parameter	Results	Units	MRL	LOD	Qualifier	
Total Dissolved Solids(TDS)	<25.0	mg/L	25.0	10.0		
		-				
Lab Control Sample (1335310))					
		Spiked	Spike	Spike	Control	
Parameter	Units	Amount	Result	Recovery	Limits	
Total Dissolved Solids(TDS)	mg/L	400	413	103	80 - 120	
Duplicate (1335312); Origina	I: Q19631000	009				
Parameter	Original	Duplicate	Units	RPD %	Limit	
Total Dissolved Solids(TDS)	201	221	mg/L	9.48	20	
, , , , , , , , , , , , , , , , , , ,			5			
Matrix Spike (1335311) Origin	al: Q196310	0009				
	11	Spiked	Spike	Spike	Control	
Parameter	Units	Amount	Result	Recovery	Limits	
Total Dissolved Solids(TDS)	mg/L	400	660	115	70 - 130	
()	0					

Preparation Batch Preparation Method Associated Lab IDs	E200.8, ICP-MS F	Prep	Analys	is Method:	E200.8, I	CP-MS			
Laboratory Reagent Bla	nk (1335770)								
Parameter	Results	Units	MRL	LOD	Qualifier				
Manganese Total	<0.00100	mg/L	0.00100	0.000400					
Laboratory Fortified Bla	nnk (1335771); Lat	Fortified E	Blank Dupl	icate (13357	72)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit
Manganese Total	mg/L	.05	.05	101	85 - 115	.05	101	0	20
Laboratory Fortified Ma	trix (1335775) Orig	inal: Q1962	2884005; L	ab Fortified	l Matrix Dup	olicate (13	35776)		
n .		Spiked	Spike	Spike	Control	Dup	Dup		RPD

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit
Manganese Total	mg/L	.05	.05	99.7	70 - 130	.05	99.4	.184	20

Preparation Batch: WET / 20511	Analysis Method:	SM4500-H+B, pH @ 25ºC
Preparation Method: SM4500-H+B, pH @ 25º	n;C	
Associated Lab IDs: Q1963233001		

Duplicate (1339858); Original: Q1963233001

· · · · · · · · · · · · · · · · · · ·	J				
Parameter	Original	Duplicate	Units	RPD %	Limit
рН	7.67	7.7	pН	.39	20
Temperature	20.2	20.5	С	1.47	

QC Sample Comments

•

Sample Type: Duplicate

General Comments for METHOD SM4500-H+B, pH - Defined as a field parameter, measurement must be taken within 15 minutes of collection. Results are provided for information purposes only.

Quality Control Cross Reference

Lab ID	Sample ID	Prep Batch	Prep Method
Q1963233001	MAJESTIC II 10	MEP/9594	E200.7 Prep
MET/7385 - E200.8, IO	CP-MS		
Lab ID	Sample ID	Prep Batch	Prep Method
Q1963233001	MAJESTIC II 10	MEP/9595	E200.8, ICP-MS Prep
MIC/5462 - SM9223, I	DEXX		
Lab ID	Sample ID	Prep Batch	Prep Method
Q1963233001	MAJESTIC II 10		
NET/20456 - E300.0,	Anions		
Lab ID	Sample ID	Prep Batch	Prep Method
Q1963233001	MAJESTIC II 10		
NET/20474 - SM2540	DC, TDS		
Lab ID	Sample ID	Prep Batch	Prep Method
Q1963233001	MAJESTIC II 10		
NET/20511 - SM4500	-H+B, pH @25ºС		
Lab ID	Sample ID	Prep Batch	Prep Method
Q1963233001	MAJESTIC II 10		

LCRA - Environmental Lab 3505 Montopolis Dr. Austin, TX 78744 Project: Maj cst/10 H Collector: Event#: Event#: Sample ID *	Phone: (512) 730-6022 or 1-800-776-5272 Fax: (512) 730-6021	+	Ľ	sedues	t for A	Request for Analysis Chain-of-Custody Record	in-of-(Custod	y Record			an le	a terr
oject: VAScSTIL I vent#: Sample ID *	https://els.lcra.org	or 1-800-776-52	5							Lab ID#: Client PO:			
	41102 II	Client: Contact: Phone:	APEX			Report To:	×			Invoice To:			
			Matrix*	ő	intainer(s)	Container(s) Type/Preservative/Number	ve/Numbe	er *		Reques	Requested Analysis *	sis *	
	Colli	Collected *	AQ = Aqueous S = Solid T = Tissue DW =Drinking	RED Y/N OSITE Y/N	unit				ØJH)Y				
	Date*	Time * HH:MM	Water	31 113	10				L.N JJS				
1 MATEXTICIT #	61-01-6 Q17	11.30			1				-				
2									7				
3													
4													
5											- 1		_
9													
7									-14				
8													
6											N 32.	10	-
10													
Transfers Relinquished By		Date/Time		Received By		Date/Time		Cooler Temp (°C)		Client Special Instructions:	ions:		
1 M BUKER	61419	00:5 /	5	0	0 0	9/11/19 800	#	T# Obs.	Corr.				
2							-	7.17	1.21	1.00			
σ						2	2		Lab Use	. Jas			

INO. 3	
--------	--

No. 8

INU.

No. 7

Well numbers correspond to Attachment 1

The water quality from each well will need to be assessed Aquifer to provide adequate drinking water. Upon con ample will need to be collected and analyzed for the follo

- <u>Ch</u>loride
- Conductivity
- <u>Flu</u>oride
 - Iron
- <u>Nitrate (as nitrogen)</u>
- Manganese
- pH
- Sulfate
- Total hardness
- Total Dissolved Solids (TDS)
- Presence/absence of total coliform bacteria

have any questions please feel free to call me at 512-773-?